0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

1- Introduction

1.1 Topic Area
Smart phones are becoming more integrated and important part of people’s daily

lives due to their highly powerful computational capabilities, such as email

applications, online banking and online shopping...etc.

Malware, short for malicious software, is one of the major security threats in
information systems. Malware includes viruses, worms, Trojan horses, spyware,

dishonest adware, most root kits, and other malicious and unwanted software [1].

Android is an OS for smart phone owned by Google Inc, Google wants Android to
become dominant in smart phone field, so they create their market to be an open
market for developers with easy conditions for publishing new apps. In addition,
Google opened Android for company solutions —companies can deploy their own
modification on Android OS, Also Google allows Android's users to install apps
from other markets —there is a lot of android markets like Amazon store, SildeMe,
Aptoide,...etc - and even form a website —unknown source-.This makes android a

great environment for developers, marketers, users and companies.

This tremendous increase unfortunately, also makes android target for Malware
applications and application's thieves. Malware applications become the main
threat field because of large custom and private data can be collected form user

smart phones like Identifiers Disclosure - individually phone number, International

www.manaraa.com

Mobile Equipment Identity number (IMEI)-, SMS, call log , contacts, browser
history, location and emails. In addition, Malware can misuse SMS for Premium

messages and root exploits. [2, 3, 4, 5]

In addition to malware android is a hot business field for developers also repackage
app can threat their businesses. There are several ways developers may lose
potential revenue: a paid application may be “cracked” and released for free, a free
application may be copied and re-released on other markets with changes to the ad
libraries or even in the same market with changes on interface and services. That

will cause ad revenue or paid price goes to the plagiarist.

1.2 Research Question
The popularity and adoption of Smart phones has greatly stimulated the

spread of mobile malware, especially on the popular platforms such as Android. In
light of their rapid growth, there is a pressing need to develop effective solutions.
General countermeasures to Android malwares are currently limited to signature-
based antivirus scanners, which efficiently detect known malwares, but they have
serious shortcomings with repackaged, refectories and redistributed. These maybe

on threads, on versions, on components or maybe on different applications.

So the question is how to detect these behaviors on apps?

10

www.manaraa.com

1.3 Significance
Tremendous increase of android markets make it easy for anyone to publish

apps and update these apps. There is also a rising danger associated with Malware
applications at mobile devices, so the problem of detecting Malwares is an
interesting topic. In fact, 86% of detected malwares are old malware repackaged in
new apps [6]. However, the fact all antimalware and antivirus focus on the current
app version and they do not count malwares distributed on different versions of the

same application.

In this research, we introduce a way to detect distributed malware on app
version application and propose new way to analyze application against

redistributed malware.

1.4 Thesis Structure
This thesis is organized as follows:

Chapter 1; Introduction: In this chapter thesis provides an introduction about
thesis problem, questions and significance, this chapter describes why we choose

this title for thesis and the idea of proposed solution.

Chapter 2; Background and Related Work: This chapter provides a background
about Android system, application and programming. It also talks about malwares
in general and malware in Android applications, at the end of this chapter there is a

group of related work in the same topic of this thesis.

11

www.manaraa.com

Chapter 3; Research Approach and Tools: This chapter describes in theoretical
view the most important used tools in this thesis; it provides readers with

description about used applications.

Chapter 4; Attack model: This chapter describes the model assumed on attack and

the 1dea of distribution malware behavior.

Chapter 5; Methodology Evaluation and Analysis. Here readers can show the used
methodology for thesis, and how we prove the feasibility of our idea, details of
DMDA algorithm, this chapter also provides details about experiments and it

results, in addition, it provides more details about algorithm.

Chapter 6; Conclusion and Future Work: A complete conclusion has been written

in this chapter; also, we talked about future work related to his topic.

References: this chapter is a list of all sources associated with thesis.

Appendices: In this chapter, author attaches sample on the attack thread and code

implementation for the proposed algorithm.

12

www.manaraa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

2- Background and Related work

2.1 ANDROID BACKGROUND
Android is a modern mobile platform that is designed to be truly open

platform. Android developers use advanced hardware and software, as well as local
and remote data, exposed through the platform to bring innovation and value

applications to consumers.

2.1.1 Android System Architecture
The architecture of Android is implemented as a software stack, customized

for mobile devices. Figure 1 Android some of the most important components of

this stack [7].

The core of the Android platform is a Linux kernel. The kernel is
responsible for handling device drivers, resource access, memory process, power
management and other typical OS duties. The kernel also acts as an abstraction

layer between the hardware and other software stack.

On top of the kernel are several native C/C++ libraries and Dlaivk VM. On
the top of this layer there is Application framework of android which is responsible
of managing android component lifecycle and interaction between android
applications and low level APIs like media framework, OpenGL and etc.. On top
of application framework there is application layer which contains contact, phone,

SMS and E-mail applications.

13

www.manaraa.com

2.1.2 Android Application Entry points
Android provides a Software Developer Kit (SDK) to developers. This SDK

exposes the API needed by developers to build applications. Unlike java
application, that has one entry point for application —main method- and works on
one program architecture, android application has multi-entry point and works on

message passing architecture. These multi entry points are:

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWDREK

Window Content View

ACCVIEy TIanager Manager Providers System

Telephony Resource Location Motification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQUite Core Libraries

Framework

e

Machine

SGL S50 libe —‘

LiNux KERNMNEL

OpenGL | ES FreeType WebKit

Display

Flash Memary Binder (IPC)
Driver

Camera Driver -
: Driver Driver

Audio Power

» 4 T -
Keypad Driver WiFi Driver Drivers Management

Figure 1 Android Architecture (Source Android developers) [8]

14

www.manaraa.com

A. Activities
In Android, an activity is an essential components of an application. Every

visual application should at least have one activity, the “main” activity even
Launcher app-special application which is running when android user open their
device- contains activity. Usually, an application has many activities and these can
start each other, where each activity holds its state (e.g. start, stop or pause). An

activity is the component that provides graphical user interface (GUI) for users.

Activity is one of the most complex and important component in android,
android framework focuses on making activity optimized for users —by optimized
battery and memory usage- and fixable for developers —by lifecycle callback- as
much as possible. Figure 2: Activity Lifecycle explain how android framework
manage activity lifecycle, onCreate and onDestroy called when activity start lives
in memory and when activity ready to remove from memory. Onstart and OnStop
called when activity start showed to user and hidden from user. OnResume and
OnPause called when activity gain and lose focus of user. OnRestart called when
activity started after stopped. Those are the main callback in activity lifecycle and

there is others but less important [9].

B. Services
Services are components in Android that do not provide any user interface, and

always run in the background to process long running operations. Services are

15

www.manaraa.com

starting by other components —even in other applications- , so other component as
activity or service can start a service. Android defines two types of Service
bounded and unbounded. Bounded service life is independent on the component
that started it. Unbounded Service does not depend on any component and any

component can starting or stopping it.

C. Broadcast Receiver
Broadcast receiver is a mechanism that defines how Android operating system

forwards its events to applications. The main usage of these broadcast receivers is
inter-process communication and tracking of specific events (e.g. arrival of an
SMS). Applications declare statically or dynamically their interest in receiving a
certain event and accordingly the OS will try to deliver this event when it happens.

Android defines two types of Broadcast Receivers: ordered and normal.

The normal Broadcast receiver is asynchronous and there is no order
according it, which applications registered to get a broadcast, would receive the
event first. As for the ordered ones, a priority can be set to require from the system
to deliver the event to each app in a certain sequence, and some apps will get the
event before others. This feature allows developers to capture and possibly modify
the event's carried data before it reaches to lower-priority consumers. In order

case, an app can prevent other apps from getting specific event by aborting the

16

www.manaraa.com

received data. Broadcast on android is one type of messaging on message passing

architecture where sender send message to group of receivers.

onRestart()

User navigates
to the activity

Another activity comes
into the foreground

e User returns

v to the activity

Apps with higher priority J
need memory onPause() |
|

The activity is
no longer visible

User navigates
v 10 the activity

onStop() - J
|
The activity is finishing or
being destroyed by the system

v
onDestroy()

-

Figure 2: Activity Lifecycle (Source Android developers) [10]

17

www.manharaa.com

2.1.3 Android Application Structure
Applications in android platform distributed in files called Android Packages

(APKs). These files contain everything that the application needs to run from
resources like images and XML files specifying Ul layouts to the application code
and metadata about what is the component of the application. APKs also include a
manifest XML that specifies a number of metadata about the application, including
its name, version information, the package (or namespace) of the code, the
permissions it requires to execute, the component it contains and much more.
Android applications are primarily developed in Java, sometimes native code may
be used. The Java source code compiled to Java byte code and then converted into
the Dalvik executable (DEX) format. Although similar to Java byte code, DEX
byte code is incompatible with the Java virtual machine and instead runs on the
Dalvik virtual machine. The conversion of Java byte code to DEX byte code is

easily reversible and there are several tools can handle it.

2.1.4 Delvik VM

Android allows developers to run their application on top of virtual machine
—known as Delvik VM-. Delvik VM created to handle limited memory size —about
60 MB only- this kind of VM can't handle standard byte code files .class even
compressed files .jar because of its limited size. It needs special pre-processing so
it replace .jar .class with classes.dex and apk files. Those kind of files replace

every string, every method name and every class name by id and lookup table. This

18

www.manaraa.com

strategy reduce data loaded in memory and keep more rooms to the actual data in

the application.

Android VM A.K.A Sandbox is a tool used in inter-application separation;
every application runs in android must running alone on one VM. VM doing inter
application division by two ways. First, every app has its different user ID. Second,

every app is using its manifest file for to determine specific permissions.

VM Actually opens the gate of reverse engineers to reverse apks to
classes.dex and resources. Again, reverse class.dex to classes, which mean inject

malware behavior or ads in real and healthy app.

2.1.5 Android Storage Options

Android provides several options for you to save application data. The
option you choose depends on your application needs, such as whether the data
should be private to your application or accessible to other applications (and the

user) and how much space your data requires etc...

Android data storage options are the following: Shared Preferences, Internal
Storage, External Storage, SQLite Databases and Network Connection [7]. The
Shared Preferences provides a general framework that allows saving and retrieving
persistent key-value pairs of primitive data types. Shared Preferences can used to

save any primitive data: Booleans, floats, integers, longs, and strings. This data

19

www.manaraa.com

will persist across user sessions. Internal Storage can used to save files directly on
the device's internal storage. By default, files saved to the internal storage are
private to your application and other applications cannot access them (nor can the
user). When the user uninstalls your application, these files are removed. External
Storage are world-readable and can be modified by the user. SQLite Databases
used to save structural relation data and retrieve them using SQL standard with
integrity constraint and indexing to fast retrieval when there is many data. In
addition, android has versioning mechanism to upgrade and downgrade database,
which help application to extend their data structure [11]. Network can used (when

it is available) to store and retrieve data on your own web-based services.

Android provides a way to expose even your private data to other
applications — with a content provider. A content provider is an optional
component that exposes read/write access to application data for other applications,

subject to whatever restrictions you want to impose.

2.2 Android Malwares
Malicious software is referred to as malware, classified by its nature as

either computer virus, Trojan horse, worm, backdoor or rootkit. The most

common malware types [12] are:

20

www.manaraa.com

Virus: Code that that inserts itself into another program and replicates, that is,
copies itself and infects other computers. Nowadays often used as a generic term

that also includes worms and Trojans horses.

Worm: Self-replicating malware, which copies itself to other nodes in a network
without user interaction using vulnerabilities. Worms do not attach themselves to

an application like a virus do.

Trojan horse: Malicious program, which masquerades itself as being an

application. Unlike viruses and worms, it does not replicate itself.

Rootkit: Software that enables continued privileged access to a computer while
actively hiding its malicious activity from administrators by modifying the

operating system functionality.

Backdoor: Specialized Trojan horse that masquerades itself as an installed program
to enable remote access to a system and bypassing normal authentication.

Additionally, backdoors attempts to remain undetected.

Spyware: Software that reveals private information about the user or computer

system to eavesdroppers.

Bot: Piece of malware that allows the bot master, i.e. the author to remotely the

infected system. Groups of infected systems that are controlled, which are denoted

21

www.manaraa.com

as botnets, instructed by the bot master to perform various malicious activity such

as distributed denial of services, stealing private information and sending spam.

2.3 Related work

Mobile security issues have gained much attention recently. Malware are
available on both the official Android market and alternative ones [13]. Research
efforts were made on detecting repackaged apps [14] or apps with known
malicious behavior [15, 16]. Google also launched its malware filtering engine
[17]. Information leakage is another major security threat for mobile devices. Kirin

[18] detects apps whose permissions might indicate potential leakage.

In general, information leakage detection reveals the potential out bound
propagation of sensitive information, which might be benign in many cases.
Instead, component hijacking detection captures the information leakages resulted

from an exploitation (i.e. sensitive data theft), in addition to other hijacking types.

Enck et al. introduced Ded [19] to convert Dalvik bytecode back to Java
bytecode, and then used existing decompilers to obtain the source code of the apps

for analysis.

Android mediates access to protect resources using a permission system.
However, it's effectiveness hinges on app developers correctly implementing it.

Chin et al. showed that apps might be exploitable when servicing external intents

22

www.manaraa.com

[20]. They built ComDroid to identify publicly exported components and warn
developers about the potential threats. For that, ComDroid checks app metadata

and specific API usages.

As a result, warned public components are not necessarily exploitable or
harmful (i.e. the openness can be by design or the component is not security
critical). On the other hand, Android permission system is subject to several
instances of the classic confused deputy attack [21]. As demonstrated by [22 <23 «
15], an unprivileged app can access permission-protected resources through
privileged apps that do not check permissions. Grace et al. [15] employed an intra-
procedural path-sensitive static analysis to discover permission leaks specific to

stock apps from multiple device vendors.

Malware detection in general has two track static analysis and dynamic
analysis. As Android applications are largely interactive and have a lot of
interference between their components, dynamic detecting malware code would
face scalability limitations as TaintDroid [24], where authors had to interact
manually with each application. This eliminates techniques such as [25, 26, 27, 28]
for detecting Android’s malwares applications. Therefore, we concentrate in this

research on static analysis.

23

www.manaraa.com

2.3.1 Static Analysis

Static analysis 1s an analysis of program application without executing the
program. Static analysis of malware android application has three main
categorization: Feature Based, Structure Based and Program Dependency Graph

(PDG) Based.

2.3.1.1 Feature Based

Feature based approaches analyze a program and extract a set of features.
Similarity between program and malware is detecting by comparing the extracted
features from the programs. The features choice can vary significantly, from

number or size of classes, methods, loops, or variables to included libraries.

Tesfay et Al. [29] Provided Anti-malware cloud that contains reputation for
every version of every application using APK’s hash code and depends on user
Anti-malware reputation. Actually, there approach cannot handle repackaged
APKs because simple change like space or comma in the APK content means

completely different hash code.

This approach is limited -even with Al still need more investigation [30, 31]-
and not realistic because it discards too much information about the structure of the

programs.

24

www.manaraa.com

2.3.1.2 Structure Based
Structure based systems convert programs into a stream of tokens and then

compare the streams between two programs. By converting programs into a stream
of tokens and ignoring easily, changed constructs such as comments, whitespace,
and variable names, structure based systems detect plagiarism more robustly than

feature-based systems.

Zhou et Al. [14] They work on DroidMOSS framework, it adopt a
specialized hashing technique called fuzzy hashing. Instead of directly processing
or comparing the entire (long) instruction sequences, it first condenses each
sequence into one much shorter fingerprint. The similarity between two apps

calculated based on the shorter fingerprints, not the original sequences.

Even when the does not depend on absolute hash map and replace it with
Fuzzy hash map [32, 33] it still face difficulty to detect repackaged apps with small

simple refactoring method

Schleimer et Al. [34] they attempt to find plagiarism with modifications
using k-grams, by finding common token substrings of length k. If the differences
between the programs are relatively infrequent or tend to be greater than k tokens

apart then the comparison, will find many k-length token streams in common.

25

www.manaraa.com

This approach also has a problem because insertion more than k instruction -
even when those instruction are naive and does not modify any behavior or flow-
this approach will be failed to detect relation between the produced malware and

the original one.

Unfortunately, even when these techniques has result better than feature

based, it still vulnerable to addition or deletion of byte code instructions.

2.3.1.3 Program Dependency Graph (PDG) Based

In Apps There are two types of dependencies: data and control. Statement s1
has data dependency on statement s2 if sl contains variable v, which v value
changed in s2. On the other side, statement s1 has control dependency on statement

s2 1f' s2 decide if s1 executed or not.

Crussell et Al. [35] working on detection clones of android apps, they
exclude famous libraries as com.facebook.android and com.google.admob using
shal hash to be sure these libraries untouched. After that, they create PDG for
every method and apply losseless and lossy filters for every method pairs in the
two apps. Lossless filter removes methods smaller than 10 nodes and lossy filter,

which discards method pairs that are unlikely to match due to a difference in the

distribution of types of nodes in the two PDGs. After that, they apply VF2

26

www.manaraa.com

algorithm to compute subgraph isomorphisms. Finally, they calculate similarity of

the two application and decide if these apps are clones or not.

This approach is good to determine clones but unfortunately, it has some
back doors. First lossless filter can attacke by divide large method to smaller ones.
They do not take noisy code in their account. Second it is good for clones but it
takes too much time for malware detection and can't find relation between

malware and malicious app

Crussell et Al. in [36] they work on AnDarwin framework its design done on
four stages: First, it represents each app as a set of vectors computed over the app's
Program Dependence Graphs, split into connected components as multiple data-
independent computations. Second, it finds similar code segments by clustering all
the vectors of all apps. Third, it eliminates library code based on the frequency of
the clusters. Finally, it detects apps that are similar, considering both full and

partial app similarity.

CHEX [37] is a tool to detect component hijacking vulnerabilities in
Android applications by tracking taints between externally accessible interfaces
and sensitive sources or sinks. Although it does not built for the task, CHEX can be
used for taint analysis. CHEX does not analyze calls into Android framework itself

but instead requires a model of the framework. CHEX’s entry-point model requires

27

www.manaraa.com

an enumeration of all possible “split orderings”. Furthermore, CHEX is limited to

at most 1-object-sensitivity.

LeakMiner [38] analyzes Android apps on market site. Thus, it does not
introduce runtime overhead to normal execution of target apps. Besides, Leak
Miner can detect information leakage before apps are distributed to users, it
implements the Android lifecycle but the analysis is not context-sensitive - A
context-sensitive analysis is an interprocedural analysis that considers the calling
context when analyzing the target of a function call. In particular, using context
information one can jump back to the original call site, whereas without that
information, the analysis information has to be propagated back to all possible call

sites, potentially losing precision-.

AndroidLeaks [39] also state the ability to handle the Android Lifecycle
including callback methods. It is based on WALA’s context-sensitive System
Dependence Graph with a context-insensitive overlay for heap tracking, but it
taints the whole object if tainted data is stored in one of its fields, i.e., is neither
field nor object sensitive. This precludes the precise analysis of many practical

scenarios.

SCanDroid [40] is a tool for reasoning about data flows in Android

applications. Its main focus is the inter-component (e.g. between two activities in

28

www.manaraa.com

the same app) and inter-app data flow. This poses the challenge of connecting
intent senders to their respective receivers in other applications. SCanDroid prunes
all call edges to Android OS methods and conservatively assumes the base object,

the parameters, and the return value to inherit taints from arguments.

EPICC [41] proposes a string analysis for inferring inter component
communication specifications. These include inter component communication
entry and exit points, information about the action, data and category components

of intents used for inter component communication, as well as Intent key/value

types.

2.4 Summary
There is many research efforts on Android malware detection, repackaging

app detection, cloning apps detection and leakage information detection. They
cover inter-process communication, permission up-used, information leakages and
harmful operation but they do not discuss the idea of leakage information on multi
app version. On our research, we will discuss this idea and create a tool to detect

these leakages.

29

www.manaraa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

3- Research Tools
Malwares for Android application are considered as one of the most growing

problems, so there must be a new techniques and tools to detect these malwares. In
fact there are many antiviruses’ tools in today market to detect malware using
either static or dynamic analysis, In this chapter a scientific view will be presented

for algorithms and techniques used for this research.

3.1 Reverse Engineering
Reverse Engineering is a process of analyzing program code or software in

order to test it from any vulnerability or any errors. Reverse engineering is the
ability to generate the source code from an executable code. This technique is used
to examine the functioning of a program or to evade security bugs, etc. Reverse
engineering can therefore be stated as a method or process of modifying a program

in order to make it behave in a manner that the reverse engineer desires.
Joany Boutet has quoted Shwartz, saying,

“Whether it's rebuilding a car engine or diagramming a sentence, people can learn
about many things simply by taking them apart and putting them back together
again. That, in a nutshell, is the concept behind reverse engineering -breaking

something down in order to understand it, build a copy or improve it * [42]

From the beginning of 2009, research scientists began proposes tools for

reverse the DalvikBytecode. One of them is undX tool which could generate a JAR

30

www.manaraa.com

file from an Android APK file, then convert to JAVA using tools such as JAD and
and JD-GUI. The undX tool worked well with basic applications; but it posed
many problems when dealing with complex Dalvik Bytecode. The Dex2Jar tool
originated then. Dex2Jar does similar job to undX; but this tool also has some

issues while dealing with complex Dalvik Bytecode.

The application, in its pre-compiled binary format, is distributed and hence it
is not possible to directly debug the source code but there are disassemblers that
convert or reverse the Dalvik Bytecode into readable format. The binaries for
Dalvik Virtual Machines are in the .dex format. Backsmali [43] 1s a disassembler
that is used for .dex files in Dalvik VM. Backsmali convert .dex file to

intermediate language with full support of .dex and without lose anything.

3.2 Static Analysis

Static analyses inspect code to derive information about the application’s
behavior at runtime. Every application has variables (inputs from a user, files,
internet etc.) an analysis has to abstract from concrete program runs. Static
analyses aims to cover all possibilities by making assumptions. The properties
derived from these assumptions can be weaker than the program’s properties
actually are, but they are guaranteed to be applicable for every program run. In this

way, static analysis detects an application behavior, which might not actually

31

www.manaraa.com

happen during runtime, but it does not miss a behavior, which can happen during

runtime (i.e. privacy invasion).

In general, there are two different approaches to static analysis: type systems
and data-flow based approaches. Type systems assign properties to components of
the application and checks whether they are going to hold during run time. Data-
flow based is a technique for gathering information about the possible set of values

calculated at various points in an application.

Modern sophisticated tools convert the input (either bytecode or source
code) to intermediate representations on which they can efficiently operate. To
model the program flow they create control-flow graphs (CGF) and call graphs.
CGF represent intra-procedural sequences of statements, call graphs contain edges

between a call site and the call target.

Usually it is not possible to determine these targets unambiguously: The
method invoked by the call site can refer to the implementation of the class
specified in the call site or any other subclass. For example, a class A defines the
method m() and has a subclass B. The call site x.m() can either refer to the
implementation of A or B, depending on the initialization of x, which might not be

statically resolvable.

32

www.manaraa.com

3.2.1 Call graph (CF)

A call graph is a directed graph that represents calling relationships between
functions in a computer program. Specifically, each node represents a function and
each edge (f, g) indicates that function f calls function g. Thus, a cycle in the graph

indicates recursive function calls.

Call graphs are a basic program analysis result that can be used for human
understanding of programs, or as a basis for further analyses, such as an analysis
that tracks the flow of values between functions. One simple application of call

graphs is finding functions that are never called.

A static CG is a call graph intended to represent every possible run of the
program. The exact static CG is an undecidable problem, so static call graph
algorithms are generally over-approximations. That is, every call relationship that
occurs is represented in the graph, and possibly some call relationships that would
never occur in actual runs of the program. CG can be resource consumers in
construction process, visiting call nodes and memory storage or example,
constructing the CG of a Java “Hello, World!" program using Spark [44] can take
up to 30 seconds, and produces a CG with 5,313 reachable methods and more than
23,000 edges. Because of that, CG can be defined to represent varying degrees of
precision. A more precise CG more precisely approximates the behavior of the real

program, at the cost of taking longer to compute and more memory to store. The

33

www.manaraa.com

most precise CG is fully context-sensitive, which means that for each function, the
graph contains a separate node for each call stack that function can be activated
with. A fully context-sensitive CG is called calling context tree. A calling context
tree can be computed dynamically easily, although it may take up a large amount
of memory. Calling context trees are usually not computed statically, because it
would take too long for a large program. The least precise call graph is context-
insensitive, which means that there is only one node for each function. This is a
tradeoff problem will be shown in the following example
public class Examplel {

public static void main(String[] args) {

String sl=newlLine("hello");

String s2=newlLine("world");
System.out.println(sl.concat(s2));

}
public static String newlLine(String input)

if(input.equals("hello"))

return tab(input.concat("\n"));
else

return input.concat("\n");

}

public static String tab(String input) {
return input.concat("\t");

34

www.manaraa.com

Codel is simple java application contains three method to clarify context
sensitivity levels no context sensitivity every method has only one node for method
in simple words there is no different between call happened on tab call in newline
and call happened on newline. On the other hand, context sensitive CG has node
for every method call happened this gives more information about the context this

method called on it.

3.3 WALA

Watson Libraries for Analysis (WALA) is a framework provides static and
dynamic analysis capabilities for Java bytecode and related languages and for
JavaScript. WALA is licensed under the Eclipse Public License. The initial WALA
infrastructure was independently developed as part of the DOMO research project
at the IBM T.J. Watson Research Center. In 2006, IBM donated the software to the

community.
Core WALA Features
WALA features include:

1- Java type system and class hierarchy analysis

2- Source language framework supporting Java and JavaScript

35

www.manaraa.com

3- Interprocedural dataflow analysis (RHS solver)
4- Context-sensitive tabulation-based slicer
5- Pointer analysis and call graph construction
a. Several algorithms provided (RTA, variants of Andersen’s analysis)
b. Highly customizable (e.g., context sensitivity policy)
1. ZeroCFA context insensitive
1. ZeroOneCFA context sensitive

c. Tuned for performance (time and space)

6- Static single assignment form SSA-based register-transfer language IR
a. SSA exsit on wala for Java and Java Script
b. Anyone can extend it and IR for other languages

7- General framework for iterative dataflow

8- General analysis utilities and data structures

9- A bytecode instrumentation library (Shrike) and a dynamic load-time

instrumentation library for Java (Dila).
10- Robustness, Efficiency and Extensibility.
3.4 Scandroid

SCanDroid [40] is a tool for reasoning about data flows in Android
applications. Its focus is the inter-component (e.g. between two activities in the

same app) and inter-app data flow. This poses the challenge of connecting intent

36

www.manaraa.com

senders to their respective receivers in other applications. SCanDroid prunes all
call edges to Android OS methods and conservatively assumes the base object, the

parameters, and the return value to inherit taints from arguments.

Scandroid one of the first tools created to static analysis for android apps
they tried to create automatic security certification for android application.
SCANDROID’s analysis is modular to allow incremental checking of applications
as they are installed on an Android device. It extracts security specifications from
manifests that accompany such applications, and checks whether data flows

through those applications are consistent with those specifications.

They converted android byte code of delvaik VM to SSA-instruction
compatible with intermediate representation (IR) form of WALA and make
WALA framework able to use for static analysis for android applications. They

make their source available on github.

We use their conversion of android byte code to IR, which is perfect, and
used by almost all static analysis tools using WALA framework for android static

analysis.

3.5 Summary
This chapter describes in theoretical view of the most important used tools in

this thesis; First a scientifically description about static analysis and call graph

37

www.manaraa.com

concepts has been discussed then a complete description about WALA framework
with its usage and features has been provided and finally information about

Scandroid and its implementation for android delvik byte code to WALA IR.

Those tools are used with reverse engineering as tool to insure results of

these tools are precise and correct.

4- Methodology Evaluation and Analysis

In this chapter a methodology, experiments and thesis proposed algorithm
will be discussed. In Section 5.1 discuss our proposed algorithm named Distributed
Malware Detection Algorithm we create to solve leakage information over
versions of application, Section 5.2 discuss implementation and used entry points,
sources, sinks, transient sinks and transient sources , Section 5.3 is the experiment

and evaluation, . Finally, section 5.4 is Summary for chapter.

4.1 DMDA Algorithm

In this thesis, we propose a new method to detect malwares distributed over
application versions. Versioning will help malwares, which are leak information -
Appendix A have example- and malwares can be divided to steps. The algorithm

proposed will help to detect these malwares using call graph and pointer analysis.

4.1.1 Definitions
Definition 1 (Entry Point)

38

www.manaraa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

concepts has been discussed then a complete description about WALA framework
with its usage and features has been provided and finally information about

Scandroid and its implementation for android delvik byte code to WALA IR.

Those tools are used with reverse engineering as tool to insure results of

these tools are precise and correct.

4- Methodology Evaluation and Analysis

In this chapter a methodology, experiments and thesis proposed algorithm
will be discussed. In Section 5.1 discuss our proposed algorithm named Distributed
Malware Detection Algorithm we create to solve leakage information over
versions of application, Section 5.2 discuss implementation and used entry points,
sources, sinks, transient sinks and transient sources , Section 5.3 is the experiment

and evaluation, . Finally, section 5.4 is Summary for chapter.

4.1 DMDA Algorithm

In this thesis, we propose a new method to detect malwares distributed over
application versions. Versioning will help malwares, which are leak information -
Appendix A have example- and malwares can be divided to steps. The algorithm

proposed will help to detect these malwares using call graph and pointer analysis.

4.1.1 Definitions
Definition 1 (Entry Point)

38

www.manaraa.com

An Entry point is the point where operating system enters a program. In
many programming languages, the main function is where a program starts its
execution. Android is operating system with multiple entry point. Activity

onCreate method is entry point.

Definition 2 (Source)

Source is calls into resource method returning non-constant value into the
application code. This value is valuable to user privacy or user life. Example
getDeviceld() resource method is an Android source. It returns a value (the IMEI)

into the application code.

Definition 3 (Sink).

Sink is calls into resource method accepting at least one non-constant data
value from the application code as parameter, if and only if those parameters go
out the application. The sendTextMessage() resource method is an Android sink as

the message text are possibly non-constant and goes to phone number.

Definition 4 (Transient Source)

Transient Source is calls into resource method returning non-constant value
stored into local storage to the application code. This value is valuable to user

privacy or user life. Example retrieve data from local database.

39

www.manaraa.com

Definition 5 (Transient Sink)

Transient Sink is calls into resource method accepting one non-constant data
value from the application code as parameter if and only if those parameters goes

to local storage resource. Example saving contacts information on local database.
Definition 6 (Leak)

Leak is a call graph path where start in Source resource and end to Sink

resource. Example Application send contacts data to internet website.
Definition 7 (Transient Leak)

Transient leak is a call graph path where start in Source resource and end to
transient Sink resource. Example Application save contacts data into local storage

media.

4.1.2 Attack model (Distributed Malware Attack Model)

Android is an open environment for development but this make it a field for
malwares as demonstrated by [22 <23 <15]. Those researchers talked about misuse
permissions, Exploiting over permissions by malicious applications and data leaks.
Many researcher efforts talking about it as mentioned on chapter 2. Their efforts is
focused on one version of android application. But android OS and many of
android markets including Google Play market support versioning on android

application [45] through android-mainfest.xml attributes android:versionCode and

40

www.manaraa.com

android:versionName so it is simple to malware producer to distribute its malware
on multi-version of android application. Version one got the data from android OS
ex. contacts and SMSs and stored it on its own data, and on version two remove
the code was responsible to store these data and add other code which is misuse

these information like leak these data to internet.

4.1.3 DMDA Algorithm

Leakage

Transient
Source

Figure 3: Attack Model

In the section we describe DMDA algorithm created to detect, malware apps
distribute their malware behavior on their versions So these application split their
Source and sink methods into two versions or more using transient sink and

transient source.

41

www.manharaa.com

Figure 3: Attack Model shows attack model, DMDA algorithm design to
detect. This model distributed its source and sink into two different versions of the
app.

DMDA algorithm steps are

1- Determine entry points of app version
2- Create call graph cg based on S where S is group of E and E is an entry
point. Cg will contains N where N is a group of nodes and D where D is a
group of edges
3- Visit call graph and determine PI —pure sink- , PO —pure source- ,
transient TI —transient sink- and TO —transient Source- nodes these
nodes.
4- Using [47] to solve dependencies and reduce reachability.
5- if v==1 then where v is the version of app
a. call findLeak
b. call findTransientSink
6- if transient think exist then
a. call savetransientSink
7- if v>1

a. call findTransientLeak

42

www.manaraa.com

b. call findLeak
c. call findTransientSink

d. saveTransientSink

findLeak procedure

1- if there is path between source and sink then leak is exist and this is a

malware app

saveTransientSink procedure

1- after finding transient sink check for possible paths used for this sink if
there is path to source this path will saved
2- save the key used to this parameter —example table name for inset

statement -

findTransientLeak procedure

1- if transient sink saved before have the same key of transient sink then this
transient leak do
a. replace transient sink with transient source paths stored before
2- else

a. ignore this transient source

43

www.manaraa.com

Figure 4: DDMA Algorithm shows the steps of DMDA algorithm in a simple way
represent the model present on attack model in Figure 3: Attack Model and shows

main idea of distribution and where main steps of algorithm happened.

Figure 5: DDMA Algorithm’s Flow shows steps of DMDA algorithm in simple

flowchart diagram. The diagram focused on main steps of algorithm like transient

sink and transient source.

Source

Leakage

Transient
Source

Figure 4: DDMA Algorithm's Model

44

www.manharaa.com

»
A
A4

Figure 5: DDMA Algorithm’s
Flowchart

45

www.manharaa.com

4.2 Implementation
This chapter explain DMDA algorithm implementation, entry points for

android application, sources, sinks, transient sinks and transient sources and how
WALA frameworks used to implement DMDA algorithm. The real code attached

on Appendix B to more details.

4.2.1 Android Entry points

Android is not like java android have multi-entry point those entry points are

the real start of building android app call graph. Entry points of android are:

1- Android.app.Activity: onCreate, onStart, onRestart, onResume, onPause,
onStop, onDestroy, onActivityResult, onRestorelnstanceState,
onSavelnstanceState.

2- Android.app.Service: onCreate, onStart, onStartCommand, onDestroy,
onBind.

3- ContentProvider: onCreate, query, insert, update, delete.

4- BroadcastReceiver: onReceive.

Those are the entry points Android OS can start android application from them and

those are the seed of call graph.

4.2.2 Source and Sink

46

www.manaraa.com

After determine entry points, must determine source and sink of our
analysis. Source and sink concept is a famous concept in privacy and data leak
analysis where data is a precious. Source is a method return a valuable data like
phone number, user SMSs, contacts, browser history etc.... Sink is a method leak

these data or misuse like send it over internet, SMS, Bluetooth etc...
For this research, we choose these Sources

1- Android.content.ContentResolver. query: this method used to query any
content provider on android app. It is one of the most famous sources on
android. Any developer with the right permission can query SMS, Contacts,
browsing history and other app data.

2- Android.location.LocationManager.[all methods]: this class is responsible to
location stuff contains GPS providers and location and last known plcae.

3- Android.telephony.TelephonyManager.[getNeighboringCelllnfo|
getCellLocation]: these methods return data about GSM cells these

information can leak user location.
In addition, these Sinks:

1- Android.app.Activity.setResult: this method used to respond on call of
startActivityForResult and it can leak data on it is parameter to other android

application.

47

www.manaraa.com

2- Android.app.Activity.[starActivity| starActivityForResult|
startActivitylfNeeded| startNextMatchingActivity| startActivityFromChild]:
these methods can leak data to other application on the intent send to start
their activities.

3- Android.content.ContentResolver.[query|insertjupdate|delete]: these
methods help developers to access Content Provider query, insert, update
and delete

4- Android.telephony.gsm.SmsManager.[sendTextMessage|sendDataMessage|
sendMultipartTextMessage]: those methods can leak data through GSM
messages.

5- Android.net.AndroidHttpClient.execute: this method can leak data through it
is parameter to internet.

6- java.net.HttpURLConnection.[getOutputStream| setRequestProperty]:these
methods can leak data through http request on header or body.

7- java.net.CookieManager. setCookie: this method can leak data through http

header called cookies.

Those are not all the sources and sinks on android those are the ones used on our

research to prove the idea there is other research doing hard work on this point [24,

19, 40].

48

www.manaraa.com

4.2.3 Transient Sources and Sinks
Transient sources and sinks are those methods used to store application data

into local storage. Those cannot consider as a pure sources and pure sinks because
they almost used to store clear data so considering them as a source or sink
probably result a false positive malware detection. But ignoring them lead to miss

malwares divided into application versions.
For this research, we choose the following method as transient Sink:

1- android.content.SharedPreferences.Editor[putBoolean| putFloat| putlnt]
putLong| putString| putStringSet]: shared preference used to persistent
primitive data or Strings and reuse them after a while. These methods can
transiently leak data through their second parameter.

2- android.database.sqlite.SQLiteDatabase[insert| insertOrThrow|
insertWithOnConflict| replace| replaceOrThrow| update|
updateWithOnConflict]:SQLLite is a simple relational database used to
store complex data types and reuse them with fast query. These methods
can transiently leak data through their second parameter through their

parameter ContentValues.

For this research, we choose the following method as transient Source:

49

www.manaraa.com

1- android.content.SharedPreferences [getBoolean| getFloat| getint| getLong|
getString| getStringSet]: these methods used to retrieve data stored on put
methods. These methods can transiently been a source of data through
their return values.

2- android.database.sqlite.SQLiteDatabase[query| queryWithFactory|
rawQuery| rawQueryWithFactory]: those methods used to retrieve data
stored using update, insert and replace methods. These methods can

transiently been a source of data through their return values.

All these lists —sources, sinks, transient sinks, transient sources and entry points-
included on eAndroidSPec.java, which is, extend ISpec class one of scandroid

specifications.

4.2.4 Exclusion list
As described on this research call graph and static analysis is greedy for

memory even simple ones can take too much memory. Because of that WALA

have exclusion list, which used to exclude unimportant classes from call graph and
data flow analysis. We exclude famous used libraries and basic java packages. This
technique help WALA to reduce memory and increase productivity. The full list of

excluded packages in Appendix B.

50

www.manaraa.com

4.2.5 Implementation
Using WALA Framework help in implementation a lot of algorithm implementing

and available to extend and reuse. We use WALA call graph which depends on
graph reachability concept and Pointer analysis implementation using kidall's

Framework [49] to follow keys of transient source and transient sinks.

Kidall's Framework based on simple constant propagation this idea was created
firstly by Kidall in [49] to Discover values that are constant on all possible

executions, and propagate values.

Simply this algorithm steps are start on entry point, process this entry point and
produce constant propagation, send these information to all first successor of this
entry point, repeat this in next successors, merge these information —intersection
them- if the data on variable is different on two branches this variable are not

included on data return by the algorithm.

This algorithm used into extract keys used to store data in transient sink and

transient source.

Based on these algorithms we build two filters: Leakage Filter, which responsible
to detect leakage malware behavior and transient filter, which responsible to detect

transient leakage and replace transient nodes with the original code.

51

www.manaraa.com

Transient leakage filter build call graph with context sensitivity for string objects
after building call graph this filter search for transient source and check previous
list of transient sink if the key of transient source equal one of the these keys it
replace the statement with call graph saved for that key finally the filter search for

the transient sink and store them with their pruned call graph.

Leakage filter take the call graph built in transient leakage filter, start searching of
paths connect source, and sink if there is a path or more then this filter recognize

this app as a malware.

4.3 Experiment: Malware detection
In this section, two experiments made to show and explain the attack and

experiment effectiveness of DDMA Algorithm. First experiment focus on the
attack model and how distribution of a famous malware in two versions make most
of anti-malware blind. The second experiment check effectiveness of DMDA
algorithm to find malware behavior distributed over android app versions and

check these apps.

4.3.1 Attack Model Expirment

Therefore, we think any malware distributed on app versions make most of
anti-malware blind even for simple, old and famous malwares like DroidKungFu
[46]. DroidKungFu is a Trojan, which although seemingly inoffensive, can actually

carry out attacks and intrusions: screen logging, stealing personal data, etc. We use

52

www.manaraa.com

DroidKungFu as example to explain the attack model. Appendix A contains the
DroidKungFu on two versions we test the two versions on VirusTotal —which is a
free online service subsidiary of Google that analyzes files and URLs enabling the
identification of viruses, worms, trojans and other kinds of malicious content
detected by antivirus engines and website scanners — and no anti-malware of 57

scanning the APKs catch the malware.

4.3.2 Effectiveness of DDMA

For this experiments chosen group of apps include the app in Appendix A with two

versions of every app these apps taken from [50].

This group contains 100 apps all of them related to contact APIs for every app two

chosen versions in this sample next table show the results

No. of apps | No. of Transient | Transient sources leakages
versions for | sources sinks
app

100 2 156 209 200 2

We find over 200 transient sinks and over 150 transient sources these are not

a leakage but these may turn on future to leakage. We find also two leakages.

53

www.manaraa.com

We check the versions where leakage happened by using reverse engineering tools
discussed before what we found is interesting one is contains the problem the other

one was false positive because of SQL complications.
Select mydata from ComplexMyDataAndContactsData;

This was the reason of false positive we have. We will discuss this issue in future

work.

Also we got attention that some apps stored unimportant data like contact id or
contact created time these will be considered on our application as a leakage but
these values does not have any valued so developers may send it without mean to

leakage data.

54

www.manaraa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

Uadlall

e Jsanll Jglas A Lpall Gl yall @)) 4830 5 56l e 33 ga sall clilull paal 304) as
o Adle) () 2 53l Claal ety bl Jidas sk e W) LedDainy Gle slaall o328
Sila V) danl 8300)) ool eyl o038 Baly 35 pexiiasall 150 5ok e sl Ay gui) 2]

Al (e g sl 13 LIS 5 Apal) Cilaeyll Jilas e Jeas A
e bl 288 adaii g ULl aas)5 4 Qo) Cudl) Wbl a0 da gl e
o328 (e IS 5 6 3 oA gl yall (8 Adaal) (Al Qs alasiuly el pall e ddlisad) il jlaa)

Q_U:AJ\ L"_ﬂj\:\.}j\

Distributed Malware Detection Algorithm cuew 4w lsa sl das byl oda Cadld
Al AEEY) Sl Lol g bl jalias apaad g cllall Jidady o 685 43 5,1 53l 038 DMDA 1 bzl

bl e dais (e ST (6 se e bl a8 glalie CadS dlee e ariedll Lgaladii o3

& 5ix3 Google Play (35w e 3 sdiall a5 0] Cilindat (e de e Ay) Al o8 4 i ol
2005 blall JED jaae 150 2 Lee iS5 4ie it 21 &8 gukat S Gulad 100 e
3 S Taliae 56 (Ao Ll laaly Lewds el jall Cay yad aig B g i Adai g Uil ulill) 388 adads

Ll ylaal (e sl o Al (o Lgia Ll a3 ol g 3

www.manaraa.com

Abstract

The importance of data stored on smart devices can make malware apps that are
trying to get this information to be exploited in either the data analysis and tracking
devices for the purposes of the owners of advertising or marketing purposes or for
blackmailing purposes of users. Increasing malwares has led to an increase in the
importance of research work on malware analysis and the discovery of this kind of

behavior.

This thesis is considered altered attack method, which distribute of the data source
and the point of loss of data on different versions of the app using local storage to

storing part or all of vital data to leak in future.

This thesis will introduce Distributed Malware Detection Algorithm (DMDA),
which is an algorithm to detect distributed malware on app versions and propose

new way to analyze application against redistributed malware.

DMDA created to analyze the data and identify transitional losses points that are
used to gloss over the algorithm sources.

We test this algorithm on a sample of Android applications published on the
Google Play market containing 100 application; every application has two version
of it. The algorithm was revealed 150 transient data source, 200 transient loss of
data point and 2 leakage of data. This dataset was checked by 56 anti-malware and

none of them find any malicious code.

www.manaraa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

Contents

ALl e 2
Y o1 o - Tox TP P RSP TTPOPROPRTN 3
D =T [Tor 1 4T] o H T T O OO USUPRTOURRTI 4
Vol Qg To) VY] F=To F= =T o T T o | PRSP 5
Lo INTEFOTUCTION .ttt b e s bt s bt e sbe e sat e sat e st e et e e sbeesbeeseeesneesaee 9
1.1 1] ool Y =T 9
1.2 RESEAICH QUESTION . .eeiiiiie ettt e st st b e e st e e s b e e sne e e s neeesreeenreean 10
IS Y 1= a1 To7= Y Lol ISR 11
1.4 THESIS SEIUCTUIE «..eeiiiiieiie ettt ettt ettt ettt et e st e s be e e abe e sabeesabbeesbbeesabeesabeeen sabaesnteesabaeenseenn 11
2- Background and ReElated WOIKooocuieiiiiiiie ettt et e e et e e e bae e s e aaa e e e easrreeeenanees 13
2.1 ANDROID BACKGROUNDcotiiiiiiiiitttte e ettt e e et e e ettt e e e e e st e e e e s e s nnreeeeeesesannneneeeeeeaaeessanannns 13
2.1.1 Android System ArChitECIUIEuvviiiee e e e e e e rrrr e e e e aeeaa e 13
2.1.2 Android Application ENtry POINTS.....ccci it e e e r e ae e e 14

AL ACTIVITIES . cciiiiiii i e 15

B. SEIVICES ..ottt e bbb s 15

C. BroadCast RECEIVETc.uii ittt sttt e s e s bt s emeeesabeesbeeeesnenesaneesanes 16
2.1.3 Android AppPlication SErUCLUIEviiiiiiiee et e e e s s sbee e s e e e nanes 18

2 1A DEIVIK VM ettt ettt ettt s st st bt s n e e re e sae e s sane e 18
2.1.5 ANAroid STOrage OPtiONS...ccccceiiiiiriieieeeeeecicrrerreee e e e eeeeibrreeeeeeesesarreeeeeeeesesarareeeeessassssseseesareeaeens 19

2.2 ANAIOId MAIWATES...c..eeeiieiieieet ettt ettt ettt b e bt e s bt e s be e s bt e satesatesanesabeeab e e sbeeneeesaeesanesane 20
2.3 REIAEEA WOTK .ttt ettt s e b e bt e sme e e sar e e e st e e s ne e e sareeenres 22

B T8 A - A ol AV - | LV [PSP 24
2.3.1. 1 FEATUIE BASEA ..ottt ettt st st e e e st e 24
2.3.1.2 SErUCEUIE BaSEU.....eeiieiiiiieiiie ettt ettt ettt sbe e sttt st st sab e e bt e b e sbeesanesaneeane 25
2.3.1.3 Program Dependency Graph (PDG) Bas@d........ccuueeeeciuiiieeciiieeeciieeeeciteeeeettee et e e iree e e 26

Y 0 Y 4T 1 29
3= RESEAICN TOOIS ..ttt ettt et e s e st e s bt e sabe e sabe e s be e e bt e e s bt e e sateesneeesareens 30
3.0 ROVEISE ENGINEEOIINEG ... ettt sttt ss bbbt s s se st seseee s anannnn 30
I = L Lol Y =1 Y2 LR 31
I N O | L= =Y o] (2 USRS 33

33 M A L A L aan e neaenentnene et bt et st neeeee s 35

R IR Y or-T g Vo [o] o I P USSP PP 36

6

www.manaraa.com

R I [T 4 - 1 OO 37

4- Methodology Evaluation and ANalYSiS........cucccuiiiiieiii et e e e e e e e e e s e e e e e e s ee e e e nnnes 38
o R 1LY T N AN P g] o o SRR 38
I =Y 4T T o T T PP PRUPRN 38
4.1.2 Attack model (Distributed Malware Attack Model)c..uoviviiiiiiriiiee e 40
4.1.3 DIMIDA AlGOTITNM ..ttt e et e e et e e e et e e e e e bt e e e esataeeesrtaeeeensaneeseesnnsaeaesnns 41

o [y oY o] L= g =T o - 4 o o PR 46
0y 00 NN To [o o I =1 Y 4 YK oo 1| 4SS 46
4.2.2 SOUICE AN SINK cutiiiiiiieiee ettt ettt ettt ettt e st e st e e sabe e s bt e s bt e e sabeesabeesabaeessbeaesseeesaseesanes 46
4.2.3 Transient SOUICES and SINKS.......cocuiiiiiiiieiieiie ettt et e s e s e s eeeeneeens 49
A.2.4 EXCIUSTON ISt .einniiiiiiiieieestee sttt sttt st st sttt et et e b e e b e smeeemeeenneenneens 50
R [g o1 =T 0 L= g1 €= 4 o o USSR 51

4.3 Experiment: Malware deteCtionuuviiiiii it re e e e e e ae e aaaaaa e 52
4.3.1 Attack MOl EXPIrMENT ...uvvieiieeeieiiiiiieeee ettt e e e e e eeetrrreeeeeeestbbaeeeeeesessabraaaeeeeesassssnsssraseeeaeens 52
4.3.2 Effectiveness OF DDIMIA ...ttt ettt sttt st st sttt et ettt e sbeesbee s emeeenneeeeens 53
5- Conclusion @nd FULUME WOTK ...c...eiiiiiiiiie ittt s e b e s e snenesaneeens 55
RETEIENCES ...ttt ettt et e b e e st e s bt e e s ab e e s abe e s beeesas e e sabeesabee e s beeebeeesnbeesareeesnneesares 57
AN o] 01T e 1ol Y- ERP SRR 61
APPENAIX A eeireeeeee ettt eeeccrre e e e e e eeetbbee beeeeeeeesaabbaaeeeeeeaaa bbb s aaaeeeea bbb aaeaeeeeaaataraaaebaaaeaeeeeaatnraaaeaeenans 61

Y oY oT=] oo [l = PSR SRR 64

7

www.manaraa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

3 980 gl i (e il gl Bae o £ 5 gall Cundld) & glad) il
DETECTION OF REDESTRIBUTED MALWARE BEHAVIOR IN
ANDROID APP VERSIONS
By
Alaa Al Salehi
120090707

A Master of Science Thesis Proposal

Supervisor:

Dr. Aiman Abu Samra

Computer Engineering Department
Islamic University
Gaza

Palestine

Feb, 2015

www.manaraa.com

Uadlall

e Jsanll Jglas A Lpall Gl yall @)) 4830 5 56l e 33 ga sall clilull paal 304) as
o Adle) () 2 53l Claal ety bl Jidas sk e W) LedDainy Gle slaall o328
Sila V) danl 8300)) ool eyl o038 Baly 35 pexiiasall 150 5ok e sl Ay gui) 2]

Al (e g sl 13 LIS 5 Apal) Cilaeyll Jilas e Jeas A
e bl 288 adaii g ULl aas)5 4 Qo) Cudl) Wbl a0 da gl e
o328 (e IS 5 6 3 oA gl yall (8 Adaal) (Al Qs alasiuly el pall e ddlisad) il jlaa)

Q_U:AJ\ L"_ﬂj\:\.}j\

Distributed Malware Detection Algorithm cuew 4w lsa sl das byl oda Cadld
Al AEEY) Sl Lol g bl jalias apaad g cllall Jidady o 685 43 5,1 53l 038 DMDA 1 bzl

bl e dais (e ST (6 se e bl a8 glalie CadS dlee e ariedll Lgaladii o3

& 5ix3 Google Play (35w e 3 sdiall a5 0] Cilindat (e de e Ay) Al o8 4 i ol
2005 blall JED jaae 150 2 Lee iS5 4ie it 21 &8 gukat S Gulad 100 e
3 S Taliae 56 (Ao Ll laaly Lewds el jall Cay yad aig B g i Adai g Uil ulill) 388 adads

Ll ylaal (e sl o Al (o Lgia Ll a3 ol g 3

www.manaraa.com

Abstract

The importance of data stored on smart devices can make malware apps that are
trying to get this information to be exploited in either the data analysis and tracking
devices for the purposes of the owners of advertising or marketing purposes or for
blackmailing purposes of users. Increasing malwares has led to an increase in the
importance of research work on malware analysis and the discovery of this kind of

behavior.

This thesis is considered altered attack method, which distribute of the data source
and the point of loss of data on different versions of the app using local storage to

storing part or all of vital data to leak in future.

This thesis will introduce Distributed Malware Detection Algorithm (DMDA),
which is an algorithm to detect distributed malware on app versions and propose

new way to analyze application against redistributed malware.

DMDA created to analyze the data and identify transitional losses points that are
used to gloss over the algorithm sources.

We test this algorithm on a sample of Android applications published on the
Google Play market containing 100 application; every application has two version
of it. The algorithm was revealed 150 transient data source, 200 transient loss of
data point and 2 leakage of data. This dataset was checked by 56 anti-malware and

none of them find any malicious code.

www.manaraa.com

Dedication
To my parents, my family, my wife and to my baby Mohamed

www.manharaa.com

Acknowledgement
I would like to acknowledge my thesis supervisors Dr. Aiman Abu Samra for his

guidance and valuable help. I also want to acknowledge my college Mahmoud Al-

kurdi who is help me with valuable resources.

www.manharaa.com

Contents

ALl e 2
Y o1 o - Tox TP P RSP TTPOPROPRTN 3
D =T [Tor 1 4T] o H T T O OO USUPRTOURRTI 4
Vol Qg To) VY] F=To F= =T o T T o | PRSP 5
Lo INTEFOTUCTION .ttt b e s bt s bt e sbe e sat e sat e st e et e e sbeesbeeseeesneesaee 9
1.1 1] ool Y =T 9
1.2 RESEAICH QUESTION . .eeiiiiie ettt e st st b e e st e e s b e e sne e e s neeesreeenreean 10
IS Y 1= a1 To7= Y Lol ISR 11
1.4 THESIS SEIUCTUIE «..eeiiiiieiie ettt ettt ettt ettt et e st e s be e e abe e sabeesabbeesbbeesabeesabeeen sabaesnteesabaeenseenn 11
2- Background and ReElated WOIKooocuieiiiiiiie ettt et e e et e e e bae e s e aaa e e e easrreeeenanees 13
2.1 ANDROID BACKGROUNDcotiiiiiiiiitttte e ettt e e et e e ettt e e e e e st e e e e s e s nnreeeeeesesannneneeeeeeaaeessanannns 13
2.1.1 Android System ArChitECIUIEuvviiiee e e e e e e rrrr e e e e aeeaa e 13
2.1.2 Android Application ENtry POINTS.....ccci it e e e r e ae e e 14

AL ACTIVITIES . cciiiiiii i e 15

B. SEIVICES ..ottt e bbb s 15

C. BroadCast RECEIVETc.uii ittt sttt e s e s bt s emeeesabeesbeeeesnenesaneesanes 16
2.1.3 Android AppPlication SErUCLUIEviiiiiiiee et e e e s s sbee e s e e e nanes 18

2 1A DEIVIK VM ettt ettt ettt s st st bt s n e e re e sae e s sane e 18
2.1.5 ANAroid STOrage OPtiONS...ccccceiiiiiriieieeeeeecicrrerreee e e e eeeeibrreeeeeeesesarreeeeeeeesesarareeeeessassssseseesareeaeens 19

2.2 ANAIOId MAIWATES...c..eeeiieiieieet ettt ettt ettt b e bt e s bt e s be e s bt e satesatesanesabeeab e e sbeeneeesaeesanesane 20
2.3 REIAEEA WOTK .ttt ettt s e b e bt e sme e e sar e e e st e e s ne e e sareeenres 22

B T8 A - A ol AV - | LV [PSP 24
2.3.1. 1 FEATUIE BASEA ..ottt ettt st st e e e st e 24
2.3.1.2 SErUCEUIE BaSEU.....eeiieiiiiieiiie ettt ettt ettt sbe e sttt st st sab e e bt e b e sbeesanesaneeane 25
2.3.1.3 Program Dependency Graph (PDG) Bas@d........ccuueeeeciuiiieeciiieeeciieeeeciteeeeettee et e e iree e e 26

Y 0 Y 4T 1 29
3= RESEAICN TOOIS ..ttt ettt et e s e st e s bt e sabe e sabe e s be e e bt e e s bt e e sateesneeesareens 30
3.0 ROVEISE ENGINEEOIINEG ... ettt sttt ss bbbt s s se st seseee s anannnn 30
I = L Lol Y =1 Y2 LR 31
I N O | L= =Y o] (2 USRS 33

33 M A L A L aan e neaenentnene et bt et st neeeee s 35

R IR Y or-T g Vo [o] o I P USSP PP 36

6

www.manaraa.com

R I [T 4 - 1 OO 37

4- Methodology Evaluation and ANalYSiS........cucccuiiiiieiii et e e e e e e e e e s e e e e e e s ee e e e nnnes 38
o R 1LY T N AN P g] o o SRR 38
I =Y 4T T o T T PP PRUPRN 38
4.1.2 Attack model (Distributed Malware Attack Model)c..uoviviiiiiiriiiee e 40
4.1.3 DIMIDA AlGOTITNM ..ttt e et e e et e e e et e e e e e bt e e e esataeeesrtaeeeensaneeseesnnsaeaesnns 41

o [y oY o] L= g =T o - 4 o o PR 46
0y 00 NN To [o o I =1 Y 4 YK oo 1| 4SS 46
4.2.2 SOUICE AN SINK cutiiiiiiieiee ettt ettt ettt ettt e st e st e e sabe e s bt e s bt e e sabeesabeesabaeessbeaesseeesaseesanes 46
4.2.3 Transient SOUICES and SINKS.......cocuiiiiiiiieiieiie ettt et e s e s e s eeeeneeens 49
A.2.4 EXCIUSTON ISt .einniiiiiiiieieestee sttt sttt st st sttt et et e b e e b e smeeemeeenneenneens 50
R [g o1 =T 0 L= g1 €= 4 o o USSR 51

4.3 Experiment: Malware deteCtionuuviiiiii it re e e e e e ae e aaaaaa e 52
4.3.1 Attack MOl EXPIrMENT ...uvvieiieeeieiiiiiieeee ettt e e e e e eeetrrreeeeeeestbbaeeeeeesessabraaaeeeeesassssnsssraseeeaeens 52
4.3.2 Effectiveness OF DDIMIA ...ttt ettt sttt st st sttt et ettt e sbeesbee s emeeenneeeeens 53
5- Conclusion @nd FULUME WOTK ...c...eiiiiiiiiie ittt s e b e s e snenesaneeens 55
RETEIENCES ...ttt ettt et e b e e st e s bt e e s ab e e s abe e s beeesas e e sabeesabee e s beeebeeesnbeesareeesnneesares 57
AN o] 01T e 1ol Y- ERP SRR 61
APPENAIX A eeireeeeee ettt eeeccrre e e e e e eeetbbee beeeeeeeesaabbaaeeeeeeaaa bbb s aaaeeeea bbb aaeaeeeeaaataraaaebaaaeaeeeeaatnraaaeaeenans 61

Y oY oT=] oo [l = PSR SRR 64

7

www.manaraa.com

Figures

Figure 1 Android Architecture (Source Android developers) [8]......ccouviiecieeeiciiee e 14
Figure 2: Activity Lifecycle (Source Android developers) [10]cccceeeverereeeiieesie e eceeeseee e e eeee e s 17
=V I E AN - ol 1V Lo Yo 1] SR 41
Figure 4: DDMA AlgOrithm s IMOTEL.......cc.uiiiiiiiie ettt e et e e e ba e e e e ar s araeeeennreee s 44
Figure 5: DDMA Algorithm™s FIOWCNAItcocviiiieecie ettt st e e sanee e 45

www.manharaa.com

1- Introduction

1.1 Topic Area
Smart phones are becoming more integrated and important part of people’s daily

lives due to their highly powerful computational capabilities, such as email

applications, online banking and online shopping...etc.

Malware, short for malicious software, is one of the major security threats in
information systems. Malware includes viruses, worms, Trojan horses, spyware,

dishonest adware, most root kits, and other malicious and unwanted software [1].

Android is an OS for smart phone owned by Google Inc, Google wants Android to
become dominant in smart phone field, so they create their market to be an open
market for developers with easy conditions for publishing new apps. In addition,
Google opened Android for company solutions —companies can deploy their own
modification on Android OS, Also Google allows Android's users to install apps
from other markets —there is a lot of android markets like Amazon store, SildeMe,
Aptoide,...etc - and even form a website —unknown source-.This makes android a

great environment for developers, marketers, users and companies.

This tremendous increase unfortunately, also makes android target for Malware
applications and application's thieves. Malware applications become the main
threat field because of large custom and private data can be collected form user

smart phones like Identifiers Disclosure - individually phone number, International

www.manaraa.com

Mobile Equipment Identity number (IMEI)-, SMS, call log , contacts, browser
history, location and emails. In addition, Malware can misuse SMS for Premium

messages and root exploits. [2, 3, 4, 5]

In addition to malware android is a hot business field for developers also repackage
app can threat their businesses. There are several ways developers may lose
potential revenue: a paid application may be “cracked” and released for free, a free
application may be copied and re-released on other markets with changes to the ad
libraries or even in the same market with changes on interface and services. That

will cause ad revenue or paid price goes to the plagiarist.

1.2 Research Question
The popularity and adoption of Smart phones has greatly stimulated the

spread of mobile malware, especially on the popular platforms such as Android. In
light of their rapid growth, there is a pressing need to develop effective solutions.
General countermeasures to Android malwares are currently limited to signature-
based antivirus scanners, which efficiently detect known malwares, but they have
serious shortcomings with repackaged, refectories and redistributed. These maybe

on threads, on versions, on components or maybe on different applications.

So the question is how to detect these behaviors on apps?

10

www.manaraa.com

1.3 Significance
Tremendous increase of android markets make it easy for anyone to publish

apps and update these apps. There is also a rising danger associated with Malware
applications at mobile devices, so the problem of detecting Malwares is an
interesting topic. In fact, 86% of detected malwares are old malware repackaged in
new apps [6]. However, the fact all antimalware and antivirus focus on the current
app version and they do not count malwares distributed on different versions of the

same application.

In this research, we introduce a way to detect distributed malware on app
version application and propose new way to analyze application against

redistributed malware.

1.4 Thesis Structure
This thesis is organized as follows:

Chapter 1; Introduction: In this chapter thesis provides an introduction about
thesis problem, questions and significance, this chapter describes why we choose

this title for thesis and the idea of proposed solution.

Chapter 2; Background and Related Work: This chapter provides a background
about Android system, application and programming. It also talks about malwares
in general and malware in Android applications, at the end of this chapter there is a

group of related work in the same topic of this thesis.

11

www.manaraa.com

Chapter 3; Research Approach and Tools: This chapter describes in theoretical
view the most important used tools in this thesis; it provides readers with

description about used applications.

Chapter 4; Attack model: This chapter describes the model assumed on attack and

the 1dea of distribution malware behavior.

Chapter 5; Methodology Evaluation and Analysis. Here readers can show the used
methodology for thesis, and how we prove the feasibility of our idea, details of
DMDA algorithm, this chapter also provides details about experiments and it

results, in addition, it provides more details about algorithm.

Chapter 6; Conclusion and Future Work: A complete conclusion has been written

in this chapter; also, we talked about future work related to his topic.

References: this chapter is a list of all sources associated with thesis.

Appendices: In this chapter, author attaches sample on the attack thread and code

implementation for the proposed algorithm.

12

www.manaraa.com

2- Background and Related work

2.1 ANDROID BACKGROUND
Android is a modern mobile platform that is designed to be truly open

platform. Android developers use advanced hardware and software, as well as local
and remote data, exposed through the platform to bring innovation and value

applications to consumers.

2.1.1 Android System Architecture
The architecture of Android is implemented as a software stack, customized

for mobile devices. Figure 1 Android some of the most important components of

this stack [7].

The core of the Android platform is a Linux kernel. The kernel is
responsible for handling device drivers, resource access, memory process, power
management and other typical OS duties. The kernel also acts as an abstraction

layer between the hardware and other software stack.

On top of the kernel are several native C/C++ libraries and Dlaivk VM. On
the top of this layer there is Application framework of android which is responsible
of managing android component lifecycle and interaction between android
applications and low level APIs like media framework, OpenGL and etc.. On top
of application framework there is application layer which contains contact, phone,

SMS and E-mail applications.

13

www.manaraa.com

2.1.2 Android Application Entry points
Android provides a Software Developer Kit (SDK) to developers. This SDK

exposes the API needed by developers to build applications. Unlike java
application, that has one entry point for application —main method- and works on
one program architecture, android application has multi-entry point and works on

message passing architecture. These multi entry points are:

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWDREK

Window Content View

ACCVIEy TIanager Manager Providers System

Telephony Resource Location Motification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQUite Core Libraries

Framework

e

Machine

SGL S50 libe —‘

LiNux KERNMNEL

OpenGL | ES FreeType WebKit

Display

Flash Memary Binder (IPC)
Driver

Camera Driver -
: Driver Driver

Audio Power

» 4 T -
Keypad Driver WiFi Driver Drivers Management

Figure 1 Android Architecture (Source Android developers) [8]

14

www.manaraa.com

A. Activities
In Android, an activity is an essential components of an application. Every

visual application should at least have one activity, the “main” activity even
Launcher app-special application which is running when android user open their
device- contains activity. Usually, an application has many activities and these can
start each other, where each activity holds its state (e.g. start, stop or pause). An

activity is the component that provides graphical user interface (GUI) for users.

Activity is one of the most complex and important component in android,
android framework focuses on making activity optimized for users —by optimized
battery and memory usage- and fixable for developers —by lifecycle callback- as
much as possible. Figure 2: Activity Lifecycle explain how android framework
manage activity lifecycle, onCreate and onDestroy called when activity start lives
in memory and when activity ready to remove from memory. Onstart and OnStop
called when activity start showed to user and hidden from user. OnResume and
OnPause called when activity gain and lose focus of user. OnRestart called when
activity started after stopped. Those are the main callback in activity lifecycle and

there is others but less important [9].

B. Services
Services are components in Android that do not provide any user interface, and

always run in the background to process long running operations. Services are

15

www.manaraa.com

starting by other components —even in other applications- , so other component as
activity or service can start a service. Android defines two types of Service
bounded and unbounded. Bounded service life is independent on the component
that started it. Unbounded Service does not depend on any component and any

component can starting or stopping it.

C. Broadcast Receiver
Broadcast receiver is a mechanism that defines how Android operating system

forwards its events to applications. The main usage of these broadcast receivers is
inter-process communication and tracking of specific events (e.g. arrival of an
SMS). Applications declare statically or dynamically their interest in receiving a
certain event and accordingly the OS will try to deliver this event when it happens.

Android defines two types of Broadcast Receivers: ordered and normal.

The normal Broadcast receiver is asynchronous and there is no order
according it, which applications registered to get a broadcast, would receive the
event first. As for the ordered ones, a priority can be set to require from the system
to deliver the event to each app in a certain sequence, and some apps will get the
event before others. This feature allows developers to capture and possibly modify
the event's carried data before it reaches to lower-priority consumers. In order

case, an app can prevent other apps from getting specific event by aborting the

16

www.manaraa.com

received data. Broadcast on android is one type of messaging on message passing

architecture where sender send message to group of receivers.

onRestart()

User navigates
to the activity

Another activity comes
into the foreground

e User returns

v to the activity

Apps with higher priority J
need memory onPause() |
|

The activity is
no longer visible

User navigates
v 10 the activity

onStop() - J
|
The activity is finishing or
being destroyed by the system

v
onDestroy()

-

Figure 2: Activity Lifecycle (Source Android developers) [10]

17

www.manharaa.com

2.1.3 Android Application Structure
Applications in android platform distributed in files called Android Packages

(APKs). These files contain everything that the application needs to run from
resources like images and XML files specifying Ul layouts to the application code
and metadata about what is the component of the application. APKs also include a
manifest XML that specifies a number of metadata about the application, including
its name, version information, the package (or namespace) of the code, the
permissions it requires to execute, the component it contains and much more.
Android applications are primarily developed in Java, sometimes native code may
be used. The Java source code compiled to Java byte code and then converted into
the Dalvik executable (DEX) format. Although similar to Java byte code, DEX
byte code is incompatible with the Java virtual machine and instead runs on the
Dalvik virtual machine. The conversion of Java byte code to DEX byte code is

easily reversible and there are several tools can handle it.

2.1.4 Delvik VM

Android allows developers to run their application on top of virtual machine
—known as Delvik VM-. Delvik VM created to handle limited memory size —about
60 MB only- this kind of VM can't handle standard byte code files .class even
compressed files .jar because of its limited size. It needs special pre-processing so
it replace .jar .class with classes.dex and apk files. Those kind of files replace

every string, every method name and every class name by id and lookup table. This

18

www.manaraa.com

strategy reduce data loaded in memory and keep more rooms to the actual data in

the application.

Android VM A.K.A Sandbox is a tool used in inter-application separation;
every application runs in android must running alone on one VM. VM doing inter
application division by two ways. First, every app has its different user ID. Second,

every app is using its manifest file for to determine specific permissions.

VM Actually opens the gate of reverse engineers to reverse apks to
classes.dex and resources. Again, reverse class.dex to classes, which mean inject

malware behavior or ads in real and healthy app.

2.1.5 Android Storage Options

Android provides several options for you to save application data. The
option you choose depends on your application needs, such as whether the data
should be private to your application or accessible to other applications (and the

user) and how much space your data requires etc...

Android data storage options are the following: Shared Preferences, Internal
Storage, External Storage, SQLite Databases and Network Connection [7]. The
Shared Preferences provides a general framework that allows saving and retrieving
persistent key-value pairs of primitive data types. Shared Preferences can used to

save any primitive data: Booleans, floats, integers, longs, and strings. This data

19

www.manaraa.com

will persist across user sessions. Internal Storage can used to save files directly on
the device's internal storage. By default, files saved to the internal storage are
private to your application and other applications cannot access them (nor can the
user). When the user uninstalls your application, these files are removed. External
Storage are world-readable and can be modified by the user. SQLite Databases
used to save structural relation data and retrieve them using SQL standard with
integrity constraint and indexing to fast retrieval when there is many data. In
addition, android has versioning mechanism to upgrade and downgrade database,
which help application to extend their data structure [11]. Network can used (when

it is available) to store and retrieve data on your own web-based services.

Android provides a way to expose even your private data to other
applications — with a content provider. A content provider is an optional
component that exposes read/write access to application data for other applications,

subject to whatever restrictions you want to impose.

2.2 Android Malwares
Malicious software is referred to as malware, classified by its nature as

either computer virus, Trojan horse, worm, backdoor or rootkit. The most

common malware types [12] are:

20

www.manaraa.com

Virus: Code that that inserts itself into another program and replicates, that is,
copies itself and infects other computers. Nowadays often used as a generic term

that also includes worms and Trojans horses.

Worm: Self-replicating malware, which copies itself to other nodes in a network
without user interaction using vulnerabilities. Worms do not attach themselves to

an application like a virus do.

Trojan horse: Malicious program, which masquerades itself as being an

application. Unlike viruses and worms, it does not replicate itself.

Rootkit: Software that enables continued privileged access to a computer while
actively hiding its malicious activity from administrators by modifying the

operating system functionality.

Backdoor: Specialized Trojan horse that masquerades itself as an installed program
to enable remote access to a system and bypassing normal authentication.

Additionally, backdoors attempts to remain undetected.

Spyware: Software that reveals private information about the user or computer

system to eavesdroppers.

Bot: Piece of malware that allows the bot master, i.e. the author to remotely the

infected system. Groups of infected systems that are controlled, which are denoted

21

www.manaraa.com

as botnets, instructed by the bot master to perform various malicious activity such

as distributed denial of services, stealing private information and sending spam.

2.3 Related work

Mobile security issues have gained much attention recently. Malware are
available on both the official Android market and alternative ones [13]. Research
efforts were made on detecting repackaged apps [14] or apps with known
malicious behavior [15, 16]. Google also launched its malware filtering engine
[17]. Information leakage is another major security threat for mobile devices. Kirin

[18] detects apps whose permissions might indicate potential leakage.

In general, information leakage detection reveals the potential out bound
propagation of sensitive information, which might be benign in many cases.
Instead, component hijacking detection captures the information leakages resulted

from an exploitation (i.e. sensitive data theft), in addition to other hijacking types.

Enck et al. introduced Ded [19] to convert Dalvik bytecode back to Java
bytecode, and then used existing decompilers to obtain the source code of the apps

for analysis.

Android mediates access to protect resources using a permission system.
However, it's effectiveness hinges on app developers correctly implementing it.

Chin et al. showed that apps might be exploitable when servicing external intents

22

www.manaraa.com

[20]. They built ComDroid to identify publicly exported components and warn
developers about the potential threats. For that, ComDroid checks app metadata

and specific API usages.

As a result, warned public components are not necessarily exploitable or
harmful (i.e. the openness can be by design or the component is not security
critical). On the other hand, Android permission system is subject to several
instances of the classic confused deputy attack [21]. As demonstrated by [22 <23 «
15], an unprivileged app can access permission-protected resources through
privileged apps that do not check permissions. Grace et al. [15] employed an intra-
procedural path-sensitive static analysis to discover permission leaks specific to

stock apps from multiple device vendors.

Malware detection in general has two track static analysis and dynamic
analysis. As Android applications are largely interactive and have a lot of
interference between their components, dynamic detecting malware code would
face scalability limitations as TaintDroid [24], where authors had to interact
manually with each application. This eliminates techniques such as [25, 26, 27, 28]
for detecting Android’s malwares applications. Therefore, we concentrate in this

research on static analysis.

23

www.manaraa.com

2.3.1 Static Analysis

Static analysis 1s an analysis of program application without executing the
program. Static analysis of malware android application has three main
categorization: Feature Based, Structure Based and Program Dependency Graph

(PDG) Based.

2.3.1.1 Feature Based

Feature based approaches analyze a program and extract a set of features.
Similarity between program and malware is detecting by comparing the extracted
features from the programs. The features choice can vary significantly, from

number or size of classes, methods, loops, or variables to included libraries.

Tesfay et Al. [29] Provided Anti-malware cloud that contains reputation for
every version of every application using APK’s hash code and depends on user
Anti-malware reputation. Actually, there approach cannot handle repackaged
APKs because simple change like space or comma in the APK content means

completely different hash code.

This approach is limited -even with Al still need more investigation [30, 31]-
and not realistic because it discards too much information about the structure of the

programs.

24

www.manaraa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

5- Conclusion and Future work
Today life activities for all people depend on latest technologies, which provide

fast and available communication, and production services, smartphones are one of
those technologies, it is used everywhere, by everyone, for almost purposes. The
wide use of smartphones applications leads for wide growth in Malwares

applications, which aims, to threat users.

Android is the most shared OS for smart phones and it has the biggest number of
malwares. In this thesis an Introduction about Android has been discussed from
Android website we talked about Android architecture , components and activity
life cycle; Thesis talked about Malwares in general and Malware in Android
applications with more details, In addition this thesis summarized a group of

related work in the topic of Android Malwares detection and leakage detection.

Our contributing was to detect the malware behavior specially leakage data on app
versions. The research main idea isto find transient source and transient sink
and convert them to their original call graph which help solving malware

distribution.

We used call graph to determine reachability and kidall's Framework to solve

dependencies and determine transient sources and sinks.

55

www.manaraa.com

To evaluate our idea we tested group of apps on our experiment. We find over 200
transient sinks and over 150 transient sources these are not a leakage but these may

turn on future to leakage. We find also two leakages.

As a future work enlarge the dataset by immigrate it with other existing
malwares datasets will decrease the false detection. Also need to create SQL parser
to exclude false positive on these cases query on the same table but on local app
data not on data stored from other data provider and also data does not have any

value like contact id and contact created time.

56

www.manaraa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

References

[1] R.Sharp, An Introduction to Malware, Technical University of Denmark, 2013.
[2] B.Solvar and P. S. Rene, "Privacy services for mobile devices," 2011.

[3] W. Enck, M. Ongtang and P. McDaniel, "Privacy services for mobile devices," IEEE Security & Privacy
Magazine, 2009.

[4] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A Study of Android Application Security," in
USENIX Security, 2011.

[5] K.Hamandi, A. Chehab, I. Elhajj and A. Kayssi, "Android SMS Malware: Vulnerability and
Mitigation," in International Conference on Advanced Information Networking and Applications,
2013.

[6] Y.Zhou and X. Jiang, "Dissecting Android Malware: Characterization and Evolution," in IEEE
Symposium on Security and Privacy, 2012.

[7]1 "Android Developers," Google, 2014. [Online]. Available:
http://developer.android.com/guide/topics/data/data-storage.html.

[8] "Anatomy Physiology of an Android," Google, 2008. [Online]. Available:
http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf.

[9] "Activities," Google, [Online]. Available:
http://developer.android.com/guide/components/activities.html. [Accessed 12 2014].

[10] "Activity," Google, [Online]. Available:
http://developer.android.com/reference/android/app/Activity.html.

[11] "sQLiteOpenHelper," Google, [Online]. Available:
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html.

[12] T. Isohara, "Kernel-based Behavior Analysis for Android Malware Detection," in IEEE Seventh
International Conference on Computational ntelligence and Security, 2011.

[13] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization and Evolution," in Security and
Privacy (SP), IEEE Symposium, 2012.

[14] W. Zhou, Y. Zhou, X. Jiang and P. Ning, "Detecting Repackaged Smartphone Applications in Third-
Party Android Marketplaces," ACM, 2012.

[15] M. Grace, Y. Zhou, Z. Wang and X. Jia, "Systematic Detection of Capability Leaks in Stock Android
Smartphones," in 19th NDSS, 2012.

57

www.manaraa.com

[16] Y. Zhou, Z. Wang, W. Zhou and X. Jiang, "Hey, You, Get Off of My Market: Detecting Malicious Apps
in Official and Alternative Android Markets," in NDSS, 2012.

[17] "Android and Security," Google, 2012. [Online]. Available:
http://googlemobile.blogspot.com/2012/02/android-and-security.html. [Accessed 2014].

[18] W. Enck, M. Ongtang and P. McDaniel, "On lightweight mobile phone application certification," in
ACM conference on Computer and communications security, 2009.

[19] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A study of android application security," in
USENIX conference on Security , 2011.

[20] E. Chin, A. Porter Felt, K. Greenwood and D. Wagner, "Analyzing inter-application communication in
Android," in international conference on Mobile systems, applications, and services, 2011.

[21] N. Hardy, "The Confused Deputy: (or why capabilities might have been invented)," in ACM SIGOPS
Operating Systems Review, 1988.

[22] L. Davi, A. Dmitrienko, A.-R. Sadeghi and M. Winandy, "Privilege escalation attacks on android," in
international conference on Information security , 2011.

[23] A. Felt, H. Wang, A. Moshchuk, S. Hanna and E. Chin, "Permission Re-Delegation: Attacks and
Defenses," in USENIX Security Symposium, 2011.

[24] W. Enck, P. Gilbert, B.-G. Chun, L. Cox, J. Jung, P. McDaniel and A. Sheth, "TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones," in 9th USENIX
Symposium on Operating Systems Design and Implementation, 2011.

[25] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu and D. Wu, "Value-Based Program Characterization and Its
Application to Software Plagiarism Detection," in Proceeding of the 33rd International Conference
on Software Engineering, 2011.

[26] G. Myles and C. Collberg, "Detecting Software Theft via Whole Program Path Birthmarks,"
Information Security, p. 404—415, 2004.

[27] T. Eder, M. Rodler, D. Vymazal and M. Zeilinger, "ANANAS — A Framework For Analyzing Android
Applications," in International Conference on Availability, Reliability and Security, 2013.

[28] A. Reina, A. Fattori and L. Cavallaro, "A system call-centric analysis and stimulation technique to
automatically reconstruct android malware behaviors," in EuroSec, 2013.

[29] W. B. Tesfay, T. Booth and K. Andersson, "Reputation Based Security Model for Android
Applications," in IEEE 11th International Conference on Trust, Security and Privacy in Computing and
Communications, 2012.

[30] V. Moonsamy, J. Rong and S. Liu, "Mining permission patterns for contrasting clean and malicious,"
Elsevier, 2013.

58

www.manaraa.com

[31] H.-S. Ham and . M.-J. Choi, "Analysis of Android Malware Detection Performance using Machine
Learning Classifiers," IEEE, 2013.

[32] "Rolling Hash (Rabin-Karp Algorithm)," Intro to Algorithms course at MIT.
[33] D. Hurlbut, "Fuzzy Hashing for Digital Forensic Investigators," 2009.

[34] "Winnowing: local algorithms for document fingerprinting," in ACM SIGMOD International ACM
SIGMOD International, 2003.

[35] J. Crussell, C. Gibler and H. Chen, "Attack of the Clones: Detecting Cloned Applications on Android
Markets," in Springer-Verlag Berlin Heidelberg, 2012.

[36] J. Crussell, C. Gibler and H. Chen, "AnDarwin: Scalable Detection of Semantically Similar Android
Applications," in Computer Security — ESORICS 2013, 2013.

[37] L. Lu, Z. Li, Z. Wu, W. Lee and G. Jiang, "CHEX: Statically Vetting Android Apps for Component
Hijacking Vulnerabilities," in ACM conference on Computer and communications security, 2012.

[38] Z. Yang and M. Yang, "LeakMiner: Detect Information Leakage on Android with Static Taint
Analysis," IEEE, 2012.

[39] C. Gibler, J. Crussell, J. Erickson and H. Chen, "Scale, AndroidLeaks: Automatically Detecting
Potential Privacy Leaks in Android Applications on a Large," Trust and Trustworthy Computing, vol.
7344, pp. 291-307, 2012.

[40] A. Fuchs, A. Chaudhuri and J. Foster, "SCanDroid: Automated Security Certification of Android
Applications," in Proceedings of the 31st IEEE Symposium on Security and Privacy, 2010.

[41] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein and Y. L. Traon, "Effective inter-
component communication mapping in Android with Epicc: An essential step towards holistic
security analysis," in USENIX Security Symposium, 2013.

[42] "Reverse Engineering Of Malware On Android," InfoSec, 2011.

[43] "smali - An assembler/disassembler for Android's dex format," [Online]. Available:
https://code.google.com/p/smali/. [Accessed 2014].

[44] O. Lhotdk and L. Hendren, "Scaling Java points-to analysis using SPARK," in International Conference
on Compiler Construction, 2003.

[45] "Versioning Your Applications," Google, [Online]. Available:
http://developer.android.com/tools/publishing/versioning.html. [Accessed 2015].

[46] "8 Notorious Android Malware Attacks," [Online]. Available:
http://www.informationweek.com/mobile/8-notorious-android-malware-attacks/d/d-id/1099385.

59

www.manaraa.com

[47] T. Reps, S. Horwitz and M. Sagiv, "Precise interprocedural dataflow analysis via graph reachability,"
in 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 1995.

[48] T. Reps, S. Horwitz and M. Sagiv, "Precise Interprocedural Dataflow Analysis via Graph
Reachability," in Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1995.

[49] G. Kildall, "A Unified Approach to Global Program Optimization," in Proceedings of the 1st Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 1973.

[50] "F-Droid," [Online]. Available: https://f-droid.org/repository/browse/. [Accessed 1/12/2014].

60

www.manharaa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

Appendices

Appendix A

Version 1

MainActivity.java

package com.example.droidkunfu;

import java.io.FileQutputStream;

import
import
import
import
import
import

import
import
import
import
import
import
import

public

}

com.
com.
.android.
com.
com.
com.

com

android.
android.

android
android.
android.

android.supp
android.cont
android.cont
android.cont
android.os.B
android.view

volley.Request;
volley.Response.ErrorListener;
volley.Response.Listener;

.volley.VolleyError;

volley.toolbox.StringRequest;
volley.toolbox.Volley;

ort.v7.app.ActionBarActivity;
ent.Context;
ent.SharedPreferences;
ent.SharedPreferences.Editor;
undle;

.Menu;

android.view

.MenuItem;

class MainActivity extends ActionBarActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.
setCon
String

String mModel = Util.PhoneState.getModel();

mModel

onCreate(savedInstanceState);
tentView(R.layout.activity_main);

mImei = Util.PhoneState.getImei(this);

= mModel.replaceAll(" ", " ");

String mOsType = Util.PhoneState.getSDKVersion()[0];
mOsType = mOsType.replaceAll("™ ", " ");
String mOsAPI = Util.PhoneState.getSDKVersion()[1];

mOsAPI

String string = mImei +

Shared

= mOsSAPI.replaceAll(" ", " ");
" " + mModel +

+ mOsType + " " + mOSAPI;

Preferences preferences = getSharedPreferences("test",

Context.MODE_PRIVATE);

Editor editor = preferences.edit();
editor.putString("message", string);
editor.commit();

Android-mainfest.xml

<?xml version="1.09"
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.droidkunfu"

encoding="utf-8"?>

nan

android:versionCode="1

61

www.manaraa.com

android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="21" />

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

<application

android:allowBackup="true”
android:icon="@drawable/ic_Launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>
Version 2
MainActivity.java

package com.example.droidkunfu;

import java.io.FileQutputStream;

import com.android.volley.Request;

import com.android.volley.Response.ErrorListener;
import com.android.volley.Response.Listener;
import com.android.volley.VolleyError;

import com.android.volley.toolbox.StringRequest;
import com.android.volley.toolbox.Volley;

import android.support.v7.app.ActionBarActivity;
import android.content.Context;

import android.content.SharedPreferences;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

public class MainActivity extends ActionBarActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);
String message = preferences.getString("message"”, null);

62

www.manharaa.com

StringRequest request = new StringRequest(Request.Method.POST,

"http://iugaza.edu.ps?test=" + message, new
Listener<String>() {

@Override
public void onResponse(String argd) {
// TODO Auto-generated method stub

}

}, new ErrorListener() {

@Override
public void onErrorResponse(VolleyError argd) {
// TODO Auto-generated method stub

}
1
Volley.newRequestQueue(this).add(request);

}

Android-mainfest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.droidkunfu"
android:versionCode="2"
android:versionName="2.0" >

<uses-sdk
android:minSdkVersion="9"
android:targetSdkvVersion="21" />

<uses-permission android:name="android.permission.INTERNET" />

<application

android:allowBackup="true"
android:icon="@drawable/ic_Llauncher"”
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"

android:label="@string/app_name"” >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

63

www.manharaa.com

Appendix B

Java60RegressionExclusions.txt

android\/accessibilityservice.*
android\/accounts.*
android\/animation.*
android\/annotation.*
android\/app\/admin.*
android\/app\/backup.*
android\/app\/job.*
android\/app\/usage.*
android\/appwidget.*
android\/bluetooth.*
android\/bluetooth\/le.*
android\/content\/pm.*
android\/content\/res.*
android\/database.*
android\/database\/sglite.*
android\/drm.*
android\/gesture.*
android\/graphics.*
android\/graphics\/drawable.*
android\/graphics\/drawable\/shapes.*
android\/graphics\/pdf.*
android\/hardware.*
android\/hardware\/camera2.*
android\/hardware\/camera2\/params.*
android\/hardware\/display.*
android\/hardware\/input.*
android\/hardware\/usb.*
android\/inputmethodservice.*
android\/location.*
android\/media.*
android\/media\/audiofx.*
android\/media\/browse.*
android\/media\/effect.*
android\/media\/projection.*
android\/media\/session.*
android\/media\/tv.*
android\/mtp.*

android\/net.*
android\/net\/http.*
android\/net\/nsd.*
android\/net\/rtp.*
android\/net\/sip.*
android\/net\/wifi.*
android\/net\/wifi\/p2p.*
android\/net\/wifi\/p2p\/nsd.*
android\/nfc.*
android\/nfc\/cardemulation.*
android\/nfc\/tech.*
android\/opengl.*

64

www.manaraa.com

android\/os\/storage.*
android\/preference.*

android\/print.*

android\/print\/pdf.*
android\/printservice.*
android\/provider.*
android\/renderscript.*

android\/sax.*

android\/security.*
android\/service\/dreams.*
android\/service\/media.*
android\/service\/notification.*
android\/service\/restrictions.*
android\/service\/textservice.*
android\/service\/voice.*
android\/service\/wallpaper.*
android\/speech.*

android\/speech\/tts.*
android\/support\/annotation.*
android\/support\/multidex.*
android\/support\/v17\/leanback.*
android\/support\/v17\/leanback\/app.*
android\/support\/v17\/leanback\/database.*
android\/support\/v17\/leanback\/graphics.*
android\/support\/v17\/leanback\/widget.*
android\/support\/v4\/accessibilityservice.*
android\/support\/v4\/content\/pm.*
android\/support\/v4\/content\/res.*
android\/support\/v4\/database.*
android\/support\/v4\/graphics.*
android\/support\/v4\/graphics\/drawable.*
android\/support\/v4\/hardware\/display.*
android\/support\/v4\/media.*
android\/support\/v4\/media\/session.*
android\/support\/v4\/net.*
android\/support\/v4\/print.*
android\/support\/v4\/provider.*
android\/support\/v4\/text.*
android\/support\/v4\/util.*
android\/support\/v4\/view\/accessibility.*
android\/support\/v7\/appcompat.*
android\/support\/v7\/cardview.*
android\/support\/v7\/graphics.*
android\/support\/v7\/gridlayout.*
android\/support\/v7\/media.*
android\/support\/v7\/mediarouter.*
android\/support\/v8\/renderscript.*
android\/system.*

android\/telecom.*

android\/telephony.*
android\/telephony\/cdma.*
android\/telephony\/gsm.*

android\/test.*

android\/test\/mock.*

65

www.manaraa.com

android\/test\/suitebuilder.*
android\/test\/suitebuilder\/annotation.*
android\/text.*
android\/text\/format.*
android\/text\/method. *
android\/text\/style.*
android\/text\/util.*
android\/transition.*
android\/util.*
android\/view\/accessibility.*
android\/view\/animation.*
android\/view\/inputmethod.*
android\/view\/textservice.*
android\/webkit.*
com\/android\/internal\/backup.*
com\/android\/internal\/os.*
com\/android\/internal\/statusbar.*
com\/android\/internal\/widget.*
com\/android\/test\/runner.*
dalvik\/annotation.*
dalvik\/bytecode.*
dalvik\/system.*
java\/awt\/font.*

java\/beans.*
java\/lang\/annotation.*
java\/lang\/ref.*
javal/lang\/reflect.*
java\/math.*

java\/net.*

java\/nio.*
javal/nio\/channels.*
javal/nio\/channels\/spi.*
java\/nio\/charset.*
java\/nio\/charset\/spi.*
java\/security.*
java\/security\/acl.*
java\/security\/cert.*
java\/security\/interfaces.*
java\/security\/spec.*
java\/sql.*

javal/text.*

java\/util.*
java\/util\/concurrent.*
java\/util\/concurrent\/atomic.*
java\/util\/concurrent\/locks.*
java\/util\/jar.*
java\/util\/logging.*
java\/util\/prefs.*
java\/util\/regex.*
java\/util\/zip.*
javax\/crypto.*
javax\/crypto\/interfaces.*
javax\/crypto\/spec.*
javax\/microedition\/khronos\/egl.*

66

www.manaraa.com

javax\/microedition\/khronos\/opengles.*
javax\/net.*

javax\/net\/ssl.*
javax\/security\/auth.*
javax\/security\/auth\/callback.*
javax\/security\/auth\/login.*
javax\/security\/auth\/x500.*
javax\/security\/cert.*
javax\/sql.*

javax\/xml.*

javax\/xml\/datatype.*
javax\/xml\/namespace.*
javax\/xml\/parsers.*
javax\/xml\/transform.*
javax\/xml\/transform\/dom.*
javax\/xml\/transform\/sax.*
javax\/xml\/transform\/stream.*
javax\/xml\/validation.*
javax\/xml\/xpath.*
junit\/framework.*

junit\/runner.*

org\/apache\/http.*
org\/apache\/http\/auth.*
org\/apache\/http\/auth\/params.*
org\/apache\/http\/client.*
org\/apache\/http\/client\/entity.*
org\/apache\/http\/client\/methods.*
org\/apache\/http\/client\/params.*
org\/apache\/http\/client\/protocol.*
org\/apache\/http\/client\/utils.*
org\/apache\/http\/conn.*
org\/apache\/http\/conn\/params.*
org\/apache\/http\/conn\/routing.*
org\/apache\/http\/conn\/scheme.*
org\/apache\/http\/conn\/ssl.*
org\/apache\/http\/conn\/util.*
org\/apache\/http\/cookie.*
org\/apache\/http\/cookie\/params.*
org\/apache\/http\/entity.*
org\/apache\/http\/impl.*
org\/apache\/http\/impl\/auth.*
org\/apache\/http\/impl\/client.*
org\/apache\/http\/impl\/conn.*
org\/apache\/http\/impl\/conn\/tsccm.*
org\/apache\/http\/impl\/cookie.*
org\/apache\/http\/impl\/entity.*
org\/apache\/http\/impl\/io.*
org\/apache\/http\/io.*
org\/apache\/http\/message.*
org\/apache\/http\/params.*
org\/apache\/http\/protocol.*
org\/apache\/http\/util.*
org\/json.*

org\/w3c\/dom. *

67

www.manaraa.com

org\/w3c\/dom\/1s.*
org\/xml\/sax.*
org\/xml\/sax\/ext.*
org\/xml\/sax\/helpers.*
org\/xmlpull\/v1l.*
org\/xmlpull\/v1\/sax2.*

AndroidSPec.java

package org.

import
import
import
import

import
import
import
import
import
import
import

import
import
import
import

distibuteme;

java.util.Arraylist;
java.util.HashSet;
java.util.Llist;

java.util.Set

org.scandroid.
org.scandroid.
org.scandroid.
org.scandroid.
org.scandroid.
org.scandroid.
org.scandroid.

J

spec.CallArgSinkSpec;
spec.CallRetSourceSpec;
spec.ISpecs;
spec.MethodNamePattern;
spec.SinkSpec;
spec.SourceSpec;
util.LoaderUtils;

com.ibm.wala.classLoader.IClass;
com.ibm.wala.classLoader.IMethod;
com.ibm.wala.ipa.cha.ClassHierarchy;
com.ibm.wala.types.ClassLoaderReference;

public class AndroidSpecs implements ISpecs {

static String
static String
static String
static String
static String

static String
static String
static String
static String
static String
static String

static String
static String

static String
static String

act = "Landroid/app/Activity";

svc = "Landroid/app/Service";

prv = "Landroid/content/ContentProvider";
brc = "Landroid/content/BroadcastReceiver";
rslv = "Landroid/content/ContentResolver";

http = "Landroid/net/AndroidHttpClient";

Lm = "Landroid/location/LocationManager";
tm = "Landroid/telephony/TelephonyManager";
smsGsm = "android/telephony/gsm/SmsManager";
LL = "Landroid/location/LocationListener";

httpURL = "Ljava/net/HttpURLConnection";

cookie = "Ljava/net/CookieManager";
shared = "Landroid/content/SharedPreferences”;
sharedEditor = "Landroid/content/SharedPreferences/Editor";

database = "Landroid/database/sqlite/SQLiteDatabase";

static MethodNamePattern actCreate = new MethodNamePattern(act, "onCreate");
static MethodNamePattern actStart = new MethodNamePattern(act, "onStart");
static MethodNamePattern actResume = new MethodNamePattern(act, "onResume");
static MethodNamePattern actStop = new MethodNamePattern(act, "onStop");

68

www.manaraa.com

static

static

static

static

static

static
static
static
static
static
static
static
static

static

static
static
static
static
static
static
static
static
static
static
static

static

static

static

static

MethodNamePattern actRestart
"onRestart");

MethodNamePattern actDestroy
"onDestroy");

MethodNamePattern actOnActivityResult = new MethodNamePattern(act,
"onActivityResult");

new MethodNamePattern(act,

new MethodNamePattern(act,

MethodNamePattern brcReceive = new MethodNamePattern(brc,
"onReceive");

MethodNamePattern actSetResult = new MethodNamePattern(act,
"setResult");

MethodNamePattern actStartActivityForResult = new MethodNamePattern(
act, "startActivityForResult");

MethodNamePattern actStartActivityIfNeeded = new MethodNamePattern(
act, "startActivityIfNeeded");

MethodNamePattern actStartNextMatchingActivity = new MethodNamePattern(
act, "startNextMatchingActivity");

MethodNamePattern actStartActivityFromChild = new MethodNamePattern(
act, "startActivityFromChild");

MethodNamePattern svcCreate = new MethodNamePattern(svc, "onCreate");

MethodNamePattern svcStart = new MethodNamePattern(svc, "onStart");

MethodNamePattern svcStartCommand = new MethodNamePattern(svc,
"onStartCommand");

MethodNamePattern svcBind = new MethodNamePattern(svc, "onBind");

MethodNamePattern svcDestroy = new MethodNamePattern(svc,
"onDestroy");

MethodNamePattern rslvQuery = new MethodNamePattern(rslv, "query");

MethodNamePattern rslvInsert = new MethodNamePattern(rslv, "insert");
MethodNamePattern rslvUpdate = new MethodNamePattern(rslv, "update");
MethodNamePattern rslvDelete = new MethodNamePattern(rslv, "delete");

MethodNamePattern prvCreate = new MethodNamePattern(prv, "onCreate");
MethodNamePattern prvQuery = new MethodNamePattern(prv, "query");
MethodNamePattern prvInsert = new MethodNamePattern(prv, "insert");
MethodNamePattern prvUpdate = new MethodNamePattern(prv, "update");
MethodNamePattern prvDelete = new MethodNamePattern(prv, "delete");

MethodNamePattern httpExecute = new MethodNamePattern(http,
"execute");

MethodNamePattern httpURLGetOutputStream = new MethodNamePattern(
httpURL, "getOutputStream");

MethodNamePattern httpURLSetRequestProperty = new MethodNamePattern(
httpURL, "getOutputStream");

MethodNamePattern cookieSetCookie = new MethodNamePattern(cookie,
"getOutputStream");

MethodNamePattern putBooleanShared = new MethodNamePattern(
sharedEditor, "putBoolean");

MethodNamePattern putFloatShared = new MethodNamePattern(
sharedEditor, "putFloat");

69

www.manaraa.com

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

MethodNamePattern putIntShared = new MethodNamePattern(sharedEditor,
"putInt");

MethodNamePattern putLongShared = new MethodNamePattern(
sharedEditor, "putLong");

MethodNamePattern putStringShared = new MethodNamePattern(
sharedEditor, "putString");

MethodNamePattern putStringSetShared = new MethodNamePattern(
sharedEditor, "putStringSet");

MethodNamePattern getBooleanShared = new MethodNamePattern(shared,
"getBoolean");

MethodNamePattern getFloatShared = new MethodNamePattern(shared,
"getFloat");

MethodNamePattern getIntShared = new MethodNamePattern(shared,
"getInt");

MethodNamePattern getLongShared = new MethodNamePattern(shared,
"getLong");

MethodNamePattern getStringShared = new MethodNamePattern(shared,
"getString");

MethodNamePattern getStringSetShared = new MethodNamePattern(shared,
"getStringSet");

MethodNamePattern insertDatabase = new MethodNamePattern(database,
"insert");

MethodNamePattern insertOrThrowDatabase = new MethodNamePattern(
database, "insertOrThrow");

MethodNamePattern insertWithOnConflictDatabase = new MethodNamePattern(
database, "insertWithOnConflict");

MethodNamePattern replaceDatabase = new MethodNamePattern(database,
"replace");

MethodNamePattern replaceOrThrowDatabase = new MethodNamePattern(
database, "replaceOrThrow");

MethodNamePattern updateDatabase = new MethodNamePattern(database,
"insertOrThrow");

MethodNamePattern updateWithOnConflictDatabase = new MethodNamePattern(
database, "updateWithOnConflict");

MethodNamePattern queryDatabase = new MethodNamePattern(database,
"query");

MethodNamePattern queryWithFactoryDatabase = new MethodNamePattern(
database, "queryWithFactory");

MethodNamePattern rawQueryDatabase = new MethodNamePattern(database,
"rawQuery");

MethodNamePattern rawQueryWithFactoryDatabase = new MethodNamePattern(
database, "rawQueryWithFactory");

MethodNamePattern LlLLocChanged = new MethodNamePattern(LL,
"onLocationChanged");

MethodNamePattern LLProvDisabled = new MethodNamePattern(LL,
"onProviderDisabled");

MethodNamePattern LLProvEnabled = new MethodNamePattern(LL,
"onProviderEnabled");

MethodNamePattern LLStatusChanged = new MethodNamePattern(LL,
"onStatusChanged");

private static MethodNamePattern[] defaultCallbacks = { actCreate,

70

www.manaraa.com

}s

actStart, actResume,

actOnActivityResult,

svcCreate, svcStart,

prvCreate, prvQuery,

public MethodNamePattern[] getEntrypointSpecs() {
return defaultCallbacks;

}

private static SourceSpec[] sourceSpecs = {

null),

"getBestProvider"),

"getCellLocation™),

}s

new

new

new

new

new

new

new

new

CallRetSourceSpec(rslvQuery, new int[] {}),

CallRetSourceSpec(new MethodNamePattern(im,
null),

CallRetSourceSpec(new MethodNamePattern(Llm,
null),

CallRetSourceSpec(new MethodNamePattern(ilm,
"getlLastKnownLocation"), null),

CallRetSourceSpec(

actStop, actRestart, actDestroy,

svcStartCommand, svcBind, svcDestroy,

prvInsert, prvUpdate, brcReceive

"getProviders"),

"getProvider"),

new MethodNamePattern(lm, "isProviderEnabled"),

CallRetSourceSpec(new MethodNamePattern(Llm,

null),
CallRetSourceSpec(new MethodNamePattern(tm,
"getNeighboringCellInfo"), null),
CallRetSourceSpec(new MethodNamePattern(tm,

null),

public SourceSpec[] getSourceSpecs() {
return sourceSpecs;

}

public SourceSpec[] getTransientSourceSpecs() {
return transientSourceSpecs;

}
/%%

* : document!

*/

private static SinkSpec[] sinkSpecs = {
new CallArgSinkSpec(actSetResult, new int[] { 2 }),

new CallArgSinkSpec(rslvQuery, new int[] { 2, 3, 4, 5 }),
new CallArgSinkSpec(rslvInsert, new int[] { 2 }),
new CallArgSinkSpec(rslvUpdate, new int[] { 2, 3, 4 }),

71

www.manaraa.com

1>

null),

null),

1)

s

new

new

new

new

new

new

new

new

new

new
new

new

CallArgSinkSpec(rslvDelete, new int[] { 2 }),

CallArgSinkSpec(actStartActivityForResult, new int[] { 1 }),
CallArgSinkSpec(actStartActivityIfNeeded, new int[] { 1 }),
CallArgSinkSpec(actStartNextMatchingActivity, new int[] { 1
CallArgSinkSpec(actStartActivityFromChild, new int[] { 2 }),

CallArgSinkSpec(
new MethodNamePattern(smsGsm, "sendTextMessage"),

CallArgSinkSpec(
new MethodNamePattern(smsGsm, "sendDataMessage"),

CallArgSinkSpec(new MethodNamePattern(smsGsm,
"sendMultipartTextMessage"), null),

CallArgSinkSpec(httpExecute, new int[] {}),

CallArgSinkSpec(httpURLGetOutputStream, new int[] {}),
CallArgSinkSpec(httpURLSetRequestProperty, new int[] { 1, 2

CallArgSinkSpec(cookieSetCookie, new int[] { 1, 2 }),

private static SinkSpec[] transientSinkSpecs = {

1)

IR

new
new
new
new
new
new
new
new

new
new
new
new

CallArgSinkSpec(putBooleanShared, new int[] { 2 }),
CallArgSinkSpec(putFloatShared, new int[] { 2 }),
CallArgSinkSpec(putIntShared, new int[] { 2 }),
CallArgSinkSpec(putLongShared, new int[] { 2 }),
CallArgSinkSpec(putStringSetShared, new int[] { 2 }),
CallArgSinkSpec(insertDatabase, new int[] { 3 }),
CallArgSinkSpec(insertOrThrowDatabase, new int[] { 3 }),
CallArgSinkSpec(insertiWithOnConflictDatabase, new int[] { 3

CallArgSinkSpec(replaceDatabase, new int[] { 3 }),
CallArgSinkSpec(replaceOrThrowDatabase, new int[] { 3 }),
CallArgSinkSpec(updateDatabase, new int[] { 2 }),
CallArgSinkSpec(updateWithOnConflictDatabase, new int[] { 2

private static SourceSpec[] transientSourceSpecs = {

new
new
new
new
new
new
new
new
new

CallRetSourceSpec(getBooleanShared, null),
CallRetSourceSpec(getFloatShared, null),
CallRetSourceSpec(getIntShared, null),
CallRetSourceSpec(getLongShared, null),
CallRetSourceSpec(getStringSetShared, null),
CallRetSourceSpec(queryDatabase, null),
CallRetSourceSpec(queryWithFactoryDatabase, null),
CallRetSourceSpec(rawQueryDatabase, null),
CallRetSourceSpec(rawQueryWithFactoryDatabase, null) };

public SinkSpec[] getSinkSpecs() {

72

www.manaraa.com

return sinkSpecs;

}

public SinkSpec[] getTransientSinkSpecs() {
return transientSinkSpecs;

}

private static MethodNamePattern[] callBacks = new MethodNamePattern[] {};

public static void addPossiblelListeners(ClassHierarchy cha) {
Set<String> ignoreMethods = new HashSet<String>();

ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.

add("<init>");
add("<clinit>");
add("registerNatives");
add("getClass");
add("hashCode");
add("equals");
add("clone");
add("toString");
add("notify");
add("notifyAll");
add("finalize");
add("wait");

List<MethodNamePattern> moreEntryPointSpecs
ArraylList<MethodNamePattern>();

new

// add default entrypoints from AndroidSpecs.entrypointSpecs

// Currently adds methods even if they exist in the ignnoreMethods

// set.

for (MethodNamePattern mnp : defaultCallbacks) {
moreEntryPointSpecs.add(mnp);

}

for (IClass ic : cha) {
if (!LoaderUtils.fromLoader(ic,
ClassLoaderReference.Application)) {
continue;

}

// finds all *Listener classes and fetches all methods for the
// listener
if (ic.getName().getClassName().toString().endsWith("Listener"))

for (IMethod im : ic.getAllMethods()) {
// : add isAbstract()?
if (!ignoreMethods.contains(im.getName().toString())
&& !im.isPrivate()) {
moreEntryPointSpecs
.add(new MethodNamePattern(ic.getName().toString(),
im.getName().toString()));

}

73

www.manaraa.com

// not a listener, just find all the methods that start with

// "on____"
else {
for (IMethod im : ic.getAllMethods()) {
// : add isAbstract()?
if (!ignoreMethods.contains(im.getName().toString())
&&

im.getName().toString().startsWith("on"
&& !im.isPrivate()) {
moreEntryPointSpecs
.add(new
MethodNamePattern(ic.getName()
.toString(),
im.getName().toString()));

}

// entrypointSpecs =
callBacks = moreEntryPointSpecs
.toArray(new
MethodNamePattern[moreEntryPointSpecs.size()]);

}

public static MethodNamePattern[] getCallBacks() {
return callBacks;

}

}
LeakageAnalysis.java

package org.distibuteme;

import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;

import org.distibuteme.flow.FlowAnalysis;
import org.distibuteme.flow.InflowAnalysis;
import org.distibuteme.flow.OutflowAnalysis;
import org.distibuteme.util.CGAnalysisContext;
import org.scandroid.domain.CodeElement;
import org.scandroid.domain.DomainElement;
import org.scandroid.domain.IFDSTaintDomain;
import org.scandroid.flow.types.FlowType;
import org.scandroid.spec.ISpecs;

import org.scandroid.util.AndroidAnalysisContext;
import org.scandroid.util.CLISCanDroidOptions;

74

www.manaraa.com

import
import
import
import

import
import
import
import
import
import
import
import

public

org.scandroid.util.EntryPoints;
org.scandroid.util.IEntryPointSpecifier;
org.slf4j.Logger;
org.slf4j.LoggerFactory;

com.google.common.collect.Lists;
com.ibm.wala.dataflow.IFDS.TabulationResult;
com.ibm.wala.ipa.callgraph.CGNode;
com.ibm.wala.ipa.callgraph.Entrypoint;
com.ibm.wala.ipa.callgraph.propagation.InstanceKey;
com.ibm.wala.ipa.cfg.BasicBlockInContext;
com.ibm.wala.ssa.analysis.IExplodedBasicBlock;
com.ibm.wala.util.MonitorUtil.IProgressMonitor;

class LeakageAnalysis {
private static final Logger Llogger = LoggerFactory
.getLogger(LeakageAnalysis.class);

public static void main(String[] args) throws Exception {
CLISCanDroidOptions options = new CLISCanDroidOptio
Logger.info("Loading app.");

AndroidAnalysisContext analysisContext = new Androi
options);

final List<Entrypoint> entrypoints = EntryPoints

ns(args, true);

dAnalysisContext(

.defaultEntryPoints(analysisContext.getClassHierarchy());

for (Entrypoint entry : entrypoints) {
Logger.info("Entry point: " + entry);
}

if (options.separateEntries()) {
int i = 1;
for (final Entrypoint entry : entrypoints) {

CGAnalysisContext<IExplodedBasicBlock> cgContext = new
CGAnalysisContext<IExplodedBasicBlock>(

analysisContext, new IEntryPointSpecifier() {

@Override

public List<Entrypoint> specify(
AndroidAnalysisContext

analysisContext) {

return

Lists.newArraylList(entry);

}
})s

Logger.info("** Processing entry point

+ entrypoints.size() + ":

Map<InstanceKey, String> map = Transie
.runAnalysis(cgContext);

Logger.info("map " + map.size());

for (Entry<InstanceKey, String> key :

Logger.info("map key= "

+ key.getValue());

+ key.getKey() +

n + i + n / n
+ entry);
ntAnalysis

map.entrySet()) {

75

www.manaraa.com

}

analyze(cgContext, null);
i++;
}
} else {
CGAnalysisContext<IExplodedBasicBlock> cgContext = new
CGAnalysisContext<IExplodedBasicBlock>(
analysisContext, new IEntryPointSpecifier() {
@Override
public List<Entrypoint> specify(
AndroidAnalysisContext
analysisContext) {
return entrypoints;

}
})s

Map<InstanceKey, String> map = TransientAnalysis
.runAnalysis(cgContext);
Logger.info("map " + map.size());
for (Entry<InstanceKey, String> key : map.entrySet()) {
Logger.info("map key= " + key.getKey() + " "
+ key.getValue());

}
analyze(cgContext, null);

}

public static int analyze(
CGAnalysisContext<IExplodedBasicBlock> analysisContext,
IProgressMonitor monitor) throws IOException {
try {
Logger.info("Supergraph size =
+ analysisContext.graph.getNumberOfNodes());

Map<InstanceKey, String> prefixes;

if (analysisContext.getOptions().stringPrefixAnalysis()) {
Logger.info("Running prefix analysis.");
prefixes = TransientAnalysis.runAnalysisHelper(

analysisContext.cg, analysisContext.pa);
Logger.info("Number of prefixes = " +
prefixes.values().size());

} else {
prefixes = new HashMap<InstanceKey, String>();

}

ISpecs specs = new AndroidSpecs();

Logger.info("Running inflow analysis.");
Map<BasicBlockInContext<IExplodedBasicBlock>,
Map<FlowType<IExplodedBasicBlock>, Set<CodeElement>>> initialTaints = InflowAnalysis

.analyze(analysisContext, prefixes, specs);

Llogger.info(" 1Initial taint size = " + initialTaints.size());

76

www.manaraa.com

Logger.info("Running flow analysis.");
IFDSTaintDomain<IExplodedBasicBlock> domain = new
IFDSTaintDomain<IExplodedBasicBlock>();
TabulationResult<BasicBlockInContext<IExplodedBasicBlock>,
CGNode, DomainElement> flowResult = FlowAnalysis
.analyze(analysisContext, initialTaints, domain,
monitor);

Logger.info("Running outflow analysis.");
Map<FlowType<IExplodedBasicBlock>,
Set<FlowType<IExplodedBasicBlock>>> permissionOutflow = new OutflowAnalysis(
analysisContext, specs).analyze(flowResult, domain);
Logger.info(" Permission outflow size = "
+ permissionOutflow.size());

Logger.info("");

Logger.info("==
);
Logger.info("");

for (Map.Entry<BasicBlockInContext<IExplodedBasicBlock>,
Map<FlowType<IExplodedBasicBlock>, Set<CodeElement>>> e : initialTaints
.entrySet()) {
Logger.info(e.getKey().toString());
for (Map.Entry<FlowType<IExplodedBasicBlock>,
Set<CodeElement>> e2 : e
.getValue().entrySet()) {
Logger.info(e2.getKey() + " <- " + e2.getValue());
}

}
for (Map.Entry<FlowType<IExplodedBasicBlock>,

Set<FlowType<IExplodedBasicBlock>>> e : permissionOutflow
.entrySet()) {
Logger.info(e.getKey().toString());

for (FlowType t : e.getValue()) {
Logger.info(" > "+ t);
}

}

return permissionOutflow.size();
} catch (com.ibm.wala.util.debug.UnimplementedError e) {
Logger.error("exception during analysis", e);

}

return 0;

}
}

TransientAnalysis.java

package org.distibuteme;

import java.util.ArraylList;
import java.util.HashMap;

77

www.manaraa.com

import
import
import

import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import
import

public

public static Map<InstanceKey,String>

java.util.Iterator;
java.util.Map;
java.util.Map.Entry;

org.scandroid.prefixtransfer.InstanceKeySite;
org.scandroid.prefixtransfer.PrefixTransferFunctionProvider;
org.scandroid.prefixtransfer.PrefixVariable;
org.scandroid.prefixtransfer.TransientTransferGraph;
org.scandroid.util.CGAnalysisContext;
org.scandroid.util.EmptyProgressMonitor;

org.slf4j.Logger;
org.slf4j.LoggerFactory;

com.ibm.wala.dataflow.graph.DataflowSolver;
com.ibm.wala.dataflow.graph.IKilldallFramework;
com.ibm.wala.dataflow.graph.ITransferFunctionProvider;
com.ibm.wala.ipa.callgraph.CallGraph;
com.ibm.wala.ipa.callgraph.propagation.InstanceKey;
com.ibm.wala.ipa.callgraph.propagation.PointerAnalysis;
com.ibm.wala.ssa.analysis.IExplodedBasicBlock;

com.ibm.wala.util.CancelException;

com.ibm.wala.util.CancelRuntimeException;

com.ibm.wala.util.graph.Graph;

class TransientAnalysis {

private static final Logger Logger
LoggerFactory.getLogger(TransientAnalysis.class);

runAnalysis(CGAnalysisContext<IExplodedBasicBlock> analysisContext) throws
CancelRuntimeException

{
}

return runAnalysisHelper(analysisContext.cg, analysisContext.pa);

public static ArrayList<InstanceKey> locateKeys(Map<InstanceKey,String> prefixes,

String

}

s) {
ArrayList<InstanceKey> keylist =

for (Entry<InstanceKey,String> e :
if (e.getValue().contains(s))

keylist.add(e.getKey());
}

return keylist;

new ArraylList<InstanceKey>();
prefixes.entrySet()) {

public static Map<InstanceKey,String> runAnalysisHelper(CallGraph cg,

PointerAnalysis pa) throws CancelRuntimeException

{

Logger . info (" #¥ sk sksoksk skt stk sk ok skt s skt R 1) 5

Logger.info("* Transient Analysis*");

78

www.manaraa.com

final Graph<InstanceKeySite> g = new TransientTransferGraph(pa);
Logger.info("* The Graph:)

Logger.info "***");
Iterator<InstanceKeySite> iksI = g.iterator();

final PrefixTransferFunctionProvider tfp = new
PrefixTransferFunctionProvider();

IKilldallFramework<InstanceKeySite, PrefixVariable> framework = new
IKilldallFramework<InstanceKeySite, PrefixVariable>()

{

public Graph<InstanceKeySite> getFlowGraph() {
return g;
}

public ITransferFunctionProvider<InstanceKeySite, PrefixVariable>
getTransferFunctionProvider() {
return tfp;
}

}s

DataflowSolver<InstanceKeySite, PrefixVariable> dfs = new
DataflowSolver<InstanceKeySite, PrefixVariable>(framework){

@Override
protected PrefixVariable makeEdgeVariable(InstanceKeySite src,
InstanceKeySite dst) {
return new PrefixVariable();

}

@Override
protected PrefixVariable makeNodeVariable(InstanceKeySite n,
boolean IN) {
PrefixVariable var = new PrefixVariable();
return var;

}

@Override

protected PrefixVariable[] makeStmtRHS(int size) {
return new PrefixVariable[size];

}

}s

Logger.info("\n**");
Logger.info("* Running Analysis");

try {

dfs.solve(new EmptyProgressMonitor());
} catch (CancelException e) {

throw new CancelRuntimeException(e);

79

www.manaraa.com

}
Map<InstanceKey,String> keys = new HashMap<InstanceKey,String>();

iksI = g.iterator();
while (iksI.hasNext()) {
InstanceKeySite iks = iksI.next();
keys.put((InstanceKey)
pa.getInstanceKeyMapping().getMappedObject(iks.instanceID()),
dfs.getOut(iks).knownPrefixes.get(iks.instancelID()));

}

return keys;

}
TransientContextSelector.java

package org.distibuteme.flow;

import com.ibm.wala.classLoader.CallSiteReference;

import com.ibm.wala.classLoader.IMethod;

import com.ibm.wala.ipa.callgraph.AnalysisOptions;

import com.ibm.wala.ipa.callgraph.CGNode;

import com.ibm.wala.ipa.callgraph.Context;

import com.ibm.wala.ipa.callgraph.impl.DefaultContextSelector;

import com.ibm.wala.ipa.callgraph.propagation.InstanceKey;

import com.ibm.wala.ipa.callgraph.propagation.NormalAllocationInNode;
import com.ibm.wala.ipa.callgraph.propagation.ReceiverInstanceContext;
import com.ibm.wala.ipa.callgraph.propagation.cfa.CallerSiteContext;
import com.ibm.wala.ipa.callgraph.propagation.cfa.CallerSiteContextPair;
import com.ibm.wala.ipa.cha.IClassHierarchy;

import com.ibm.wala.types.ClassLoaderReference;

import com.ibm.wala.util.intset.IntSet;

public class TransientContextSelector extends DefaultContextSelector {
public TransientContextSelector(AnalysisOptions options, IClassHierarchy cha) {

super(options, cha);
}

@Override
public Context getCalleeTarget(CGNode caller, CallSiteReference site,
IMethod callee, InstanceKey[] receivers) {

if(callee.getSignature().equals("java.lang.StringBuilder.toString()Ljava/lang/String;
")

callee.getSignature().equals("java.lang.StringBuilder.append(Ljava/lang/String;)Ljava
/lang/StringBuilder;") ||

callee.getSignature().equals("java.lang.String.valueOf(Ljava/lang/Object;)Ljava/lang/
String;") ||

80

www.manaraa.com

callee.getSignature().equals("java.lang.String.toString()Ljava/lang/String;") ||

callee.getSignature().equals("android.content.SharedPreferences.getString(Ljava/lang/
String;Ljava/lang/String;)Ljava/lang/String;") ||

callee.getSignature().equals("android.content.SharedPreferences.Editor.putString(Ljav
a/lang/String;Ljava/lang/String;)Ljava/lang/String;"))
{

if(receivers[0] instanceof NormalAllocationInNode)

{

if(((NormalAllocationInNode)receivers[0]).getSite().getDeclaredType().getClassLoader(
) .equals(ClassLoaderReference.Application)&&! ((NormalAllocationInNode)receivers[0]).g
etNode().getMethod().getSignature().contains("android. support™)){

// create a context based on the site and the receiver

return new CallerSiteContextPair(caller,site,new
ReceiverInstanceContext(receivers[0]));

}
}

else
if(callee.getSignature().equals("java.lang.String.valueOf(Ljava/lang/Object;)Ljava/la
ng/String;") ||

callee.getSignature().equals("java.lang.String.toString()Ljava/lang/String;"))

¢ return new CallerSiteContext(caller,site);
}
}
return super.getCalleeTarget(caller, site, callee, receivers);
}
@Override

public IntSet getRelevantParameters(CGNode node, CallSiteReference call) {
return super.getRelevantParameters(node,call);
}
}

CGAnalysisContext.java

package org.distibuteme.util;

import java.io.File;

import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArraylList;
import java.util.Collection;
import java.util.Deque;

import java.util.Iterator;
import java.util.List;

import java.util.Set;

81

www.manaraa.com

import
import
import
import
import
import

org
org
org
org
org
org

.distibute

.scandroid.
.scandroid.

.scandroid

.scandroid.
.scandroid.

me.flow.TransientContextSelector;
domain.CodeElement;
domain.FieldElement;
.domain.InstanceKeyElement;
util.AndroidAnalysisContext;
util.IEntryPointSpecifier;

import org.scandroid.util.ISCanDroidOptions;
import org.scandroid.util.LoaderUtils;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import com.google.common.collect.Queues;

import com.ibm.wala.classLoader.IClass;

import com.ibm.wala.classLoader.IField;

import com.ibm.wala.classLoader.IMethod;

import com.ibm.wala.dalvik.classLoader.DexIRFactory;
import com.ibm.wala.dataflow.IFDS.ICFGSupergraph;

import com.ibm.wala.dataflow.IFDS.ISupergraph;

import com.ibm.wala.ipa.callgraph.AnalysisCache;

import com.ibm.wala.ipa.callgraph.AnalysisOptions;

import com.ibm.wala.ipa.callgraph.AnalysisScope;

import com.ibm.wala.ipa.callgraph.CGNode;

import com.ibm.wala.ipa.callgraph.CallGraph;

import com.ibm.wala.ipa.callgraph.Entrypoint;

import com.ibm.wala.ipa.callgraph.impl.Everywhere;

import com.ibm.wala.ipa.callgraph.impl.PartialCallGraph;
import com.ibm.wala.ipa.callgraph.propagation.ConcreteTypeKey;
import com.ibm.wala.ipa.callgraph.propagation.InstanceKey;
import com.ibm.wala.ipa.callgraph.propagation.PointerKey;
import com.ibm.wala.ipa.callgraph.propagation.SSAPropagationCallGraphBuilder;
import com.ibm.wala.ipa.cha.ClassHierarchy;

import com.ibm.wala.ssa.IRFactory;

import com.ibm.wala.ssa.ISSABasicBlock;

import com.ibm.wala.ssa.SSACFG;

import com.ibm.wala.ssa.SSACFG.BasicBlock;

import com.ibm.wala.ssa.SSAInstruction;

import com.ibm.wala.types.ClassLoaderReference;

import com.ibm.wala.types.TypeReference;

import com.ibm.wala.util.Predicate;

import com.ibm.wala.util.collections.HashSetFactory;
import com.ibm.wala.util.graph.GraphSlicer;

import com.ibm.wala.util.intset.OrdinalSet;

import com.ibm.wala.util.warnings.Warning;

import com.ibm.wala.util.warnings.Warnings;

public class CGAnalysisContext<E extends ISSABasicBlock> extends
org.scandroid.util.CGAnalysisContext<E>{

private static final Logger Logger =
LoggerFactory.getlLogger(CGAnalysisContext.class);

public CGAnalysisContext(AndroidAnalysisContext analysisContext,
IEntryPointSpecifier specifier)
throws IOException {

82

www.manaraa.com

this(analysisContext, specifier, new ArrayList<InputStream>());

}

public CGAnalysisContext(AndroidAnalysisContext analysisContext,
IEntryPointSpecifier specifier,
Collection<InputStream> extraSummaries) throws IOException {
super(analysisContext, specifier, extraSummaries);
final AnalysisScope scope = analysisContext.getScope();
final ClassHierarchy cha = analysisContext.getClassHierarchy();
final ISCanDroidOptions options = analysisContext.getOptions();

entrypoints = specifier.specify(analysisContext);
AnalysisOptions analysisOptions = new AnalysisOptions(scope,
entrypoints);
for (Entrypoint e : entrypoints) {
Logger.debug("Entrypoint: " + e);

}

analysisOptions.setReflectionOptions(options.getReflectionOptions());

AnalysisCache cache = new AnalysisCache((IRFactory<IMethod>) new
DexIRFactory());

SSAPropagationCallGraphBuilder cgb;

if (null != options.getSummariesURI()) {
extraSummaries.add(new FileInputStream(new
File(options.getSummariesURI())));

}

cgb =
AndroidAnalysisContext.makeVanillaZeroOneCFABuilder(analysisOptions, cache, cha,
scope,
new TransientContextSelector(analysisOptions, cha), null,
null, null);

if (analysisContext.getOptions().cgBuilderWarnings()) {
// CallGraphBuilder construction warnings
for (Iterator<Warning> wi = Warnings.iterator(); wi.hasNext();) {
Warning w = wi.next();
Logger .warn(w.getMsg());
}
}

Warnings.clear();

Logger_ in'FO("*************************“);

Logger.info("* Building Call Graph *");

Logger . info (" #ikkssssskskoskokodokkor sk okskododokok) »

boolean graphBuilt = true;
try {

cg = cgb.makeCallGraph(cgb.getOptions());
} catch (Exception e) {

graphBuilt = false;

if (loptions.testCGBuilder()) {

83

www.manaraa.com

throw new RuntimeException(e);
} else {
e.printStackTrace();
}
}

if (options.testCGBuilder()) {
int status = graphBuilt ? @ : 1;
System.exit(status);

}

pa = cgb.getPointerAnalysis();
partialGraph = GraphSlicer.prune(cg, new Predicate<CGNode>() {
@Override
// CallGraph composed of APK nodes
public boolean test(CGNode node) {
return LoaderUtils.fromLoader(node,
ClasslLoaderReference.Application) || node.getMethod().isSynthetic();

})s
if (options.includelLibrary()) {

graph = (ISupergraph) ICFGSupergraph.make(cg, cache);
} else {

Collection<CGNode> nodes = HashSetFactory.make();
for (Iterator<CGNode> nIter = partialGraph.iterator();
nIter.hasNext();) {
nodes.add(nIter.next());

CallGraph pcg = PartialCallGraph.make(cg,
cg.getEntrypointNodes(), nodes);
graph = (ISupergraph) ICFGSupergraph.make(pcg, cache);

}

onelLevelGraph = GraphSlicer.prune(cg, new Predicate<CGNode>() {
@Override
public boolean test(CGNode node) {
// Node in APK
if (LoaderUtils.fromLoader(node,
ClassLoaderReference.Application)) {
return true;
} else {
Iterator<CGNode> n = cg.getPredNodes(node);
while (n.hasNext()) {
// Primordial node has a successor in APK
if (LoaderUtils.fromLoader(n.next(),
ClassLoaderReference.Application))

}

n = cg.getSuccNodes(node);

while (n.hasNext()) {
// Primordial node has a predecessor in APK
if (LoaderUtils.fromLoader(n.next(),

return true;

ClassLoaderReference.Application))

84

www.manaraa.com

return true;

}

return false;

1)

systemToApkGraph = GraphSlicer.prune(cg, new Predicate<CGNode>() {
@Override
public boolean test(CGNode node) {

if (LoaderUtils.fromLoader(node,
ClassLoaderReference.Primordial)) {
Iterator<CGNode> succs = cg.getSuccNodes(node);
while (succs.hasNext()) {
CGNode n = succs.next();

if (LoaderUtils.fromLoader(n,
ClassLoaderReference.Application)) {
return true;
}
}
// Primordial method, with no link to APK code:
return false;
} else if (LoaderUtils.fromLoader(node,
ClassLoaderReference.Application)) {
// see if this is an APK method that was
// invoked by a Primordial method:
Iterator<CGNode> preds = cg.getPredNodes(node);
while (preds.hasNext()) {
CGNode n = preds.next();

if (LoaderUtils.fromLoader(n,
ClassLoaderReference.Primordial)) {
return true;
}
}
// APK code, no link to Primordial:
return false;

}

// who knows, not interesting:
return false;

3)s

if (options.stdoutCG()) {
for (Iterator<CGNode> nodel = cg.iterator(); nodeI.hasNext();) {
CGNode node = nodeIl.next();
Logger.debug("CGNode: " + node);
for (Iterator<CGNode> succI = cg.getSuccNodes(node);

succI.hasNext();) {

85

www.manharaa.com

Logger.debug("\tSuccCGNode: " +

succI.next().getMethod().getSignature());
}
}
}
for (Iterator<CGNode> nodel = cg.iterator(); nodeI.hasNext();) {
CGNode node = nodeI.next();
if (node.getMethod().isSynthetic()) {
Logger.trace("Synthetic Method: {}",
node.getMethod().getSignature());
Logger.trace("{}",
node.getIR().getControlFlowGraph().toString());
SSACFG ssaCFG = node.getIR().getControlFlowGraph();
int totalBlocks = ssaCFG.getNumberOfNodes();
for (int i = @; i < totalBlocks; i++) {
Logger.trace("BLOCK #{}", 1i);
BasicBlock bb = ssaCFG.getBasicBlock(i);

for (SSAInstruction ssal : bb.getAllInstructions())

Logger.trace("\tInstruction: {}", ssal);

}

public Set<CodeElement> codeElementsForInstanceKey(InstanceKey rootIK) {
Set<CodeElement> elts = HashSetFactory.make();
Deque<InstanceKey> iks = Queues.newArrayDeque();
iks.push(rootIK);

while (l!iks.isEmpty()) {

InstanceKey ik = iks.pop();

Logger.debug("getting code elements for {}", ik);

elts.add(new InstanceKeyElement(ik));

final IClass clazz = ik.getConcreteType();

final TypeReference typeRef = clazz.getReference();

// If an array, recur down into the structure

if (typeRef.isArrayType()) {

if (typeRef.getArrayElementType().isPrimitiveType()) {

// don't do anything for primitive contents
continue;

}

OrdinalSet<InstanceKey> pointsToSet =

pa.getPointsToSet(pa.getHeapModel().getPointerKeyForArrayContents(ik));
if (pointsToSet.isEmpty()) {
Logger.debug("pointsToSet empty for array contents,
creating InstanceKey manually");
final IClass contentsClass =
pa.getClassHierarchy().lookupClass(typeRef.getArrayElementType());
if (contentsClass.isInterface()) {

86

www.manaraa.com

for (IClass implementor :
analysisContext.concreteClassesForInterface(contentsClass)) {
final InstanceKey contentsIK

new
ConcreteTypeKey(implementor);

final InstanceKeyElement elt = new
InstanceKeyElement(contentsIK);
if (lelts.contains(elt)) {
elts.add(elt);

iks.push(contentsIK);

}
} else {

InstanceKey contentsIK = new
ConcreteTypeKey(contentsClass);
final InstanceKeyElement elt = new
InstanceKeyElement(contentsIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(contentsIK);

}
} else {

for (InstanceKey contentsIK : pointsToSet) {
final InstanceKeyElement elt = new
InstanceKeyElement(contentsIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(contentsIK);

}
}
continue;
}
for (IField field : clazz.getAllInstanceFields()) {
Logger.debug("adding elements for field {}", field);
final TypeReference fieldTypeRef =
field.getFieldTypeReference();
elts.add(new FieldElement(ik, field.getReference()));
final IClass fieldClass =
analysisContext.getClassHierarchy().lookupClass(fieldTypeRef);
if (fieldTypeRef.isPrimitiveType() || fieldClass == null)
{
continue;
} else if (fieldTypeRef.isArrayType()) {
PointerkKey pk =
pa.getHeapModel().getPointerKeyForInstanceField(ik, field);
final OrdinalSet<InstanceKey> pointsToSet =
pa.getPointsToSet(pk);
if (pointsToSet.isEmpty()) {
Logger.debug("pointsToSet empty for array
field, creating InstanceKey manually");
InstanceKey fieldIK = new
ConcreteTypeKey(pa.getClassHierarchy().lookupClass(fieldTypeRef));

87

www.manaraa.com

final InstanceKeyElement elt = new
InstanceKeyElement (fieldIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(fieldIK);
}
} else {
for (InstanceKey fieldIK : pointsToSet) {
final InstanceKeyElement elt = new
InstanceKeyElement (fieldIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(fieldIK);

}

¥
} else if (fieldTypeRef.isReferenceType()) {

PointerKey pk =
pa.getHeapModel().getPointerKeyForInstanceField(ik, field);
final OrdinalSet<InstanceKey> pointsToSet =
pa.getPointsToSet(pk);
if (pointsToSet.isEmpty() &&
lanalysisContext.getClassHierarchy().isInterface(fieldTypeRef)) {
Logger.debug("pointsToSet empty for reference
field, creating InstanceKey manually");
InstanceKey fieldIK = new
ConcreteTypeKey(fieldClass);
final InstanceKeyElement elt = new
InstanceKeyElement(fieldIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(fieldIK);
}
} else {
for (InstanceKey fieldIK : pointsToSet) {
final InstanceKeyElement elt = new
InstanceKeyElement(fieldIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(fieldIK);

}
}

return elts;

}

public ISCanDroidOptions getOptions() {
return analysisContext.getOptions();

}

public ClassHierarchy getClassHierarchy() {

88

www.manaraa.com

return analysisContext.getClassHierarchy();

}

public AnalysisScope getScope() {
return analysisContext.getScope();
}

public List<Entrypoint> getEntrypoints() {
return entrypoints;
}

public CGNode nodeForMethod(IMethod method) {
return cg.getNode(method, Everywhere.EVERYWHERE);

}

89

www.manharaa.com

http://www.tcpdf.org

0.0

inghigll jla
DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Detection Of Redestributed Malware Behavior In Android App Versions 1Ulgusll
Al Salehi, Alaa eI N RSV

Abu Samra, Aiman Ahmed(Advisor) FVICY IUUPY 73

2015 1S3>l 2y,

X ‘&390

1-89 1ol=aall

768547 :MD 3,

duzol> Jilw, rSgizeall g9

English :aell

uiow>lo alw, ragolell a)all

(85¢) @Ml asolxl raeol=l

awaspll ads ra sl

owlodd radgall

Dissertations 1logleoll aclgd

w9yl B0l il lzoll coguwlll dwria gaolgo
https://search.mandumah.com/Record/768547 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©

sl s3lall 03a aclb of o Sy abgino il Bgi> grox ol lale il Bga> ool go gigall Byl sle sl aslio ssloll 0ia
s ol il Beds> wlol o s guyai s> (csuaySIVl 3yl of oyl g8lgo Jio) @lmws oSl yuc il of gzl ol i)l giovs chasd saseidl
aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/768547

3 980 gl i (e il gl Bae o £ 5 gall Cundld) & glad) il
DETECTION OF REDESTRIBUTED MALWARE BEHAVIOR IN
ANDROID APP VERSIONS
By
Alaa Al Salehi
120090707

A Master of Science Thesis Proposal

Supervisor:

Dr. Aiman Abu Samra

Computer Engineering Department
Islamic University
Gaza

Palestine

Feb, 2015

www.manaraa.com

http://www.tcpdf.org

3 980 gl i (e il gl Bae o £ 5 gall Eandld) & glad) il
DETECTION OF REDESTRIBUTED MALWARE BEHAVIOR IN
ANDROID APP VERSIONS
By
Alaa Al Salehi
120090707

A Master of Science Thesis Proposal

Supervisor:

Dr. Aiman Abu Samra

Computer Engineering Department
Islamic University
Gaza

Palestine

Feb, 2015

www.manaraa.com

Uadlall

o Jsanll Jylas) Lpall Gl yall @)) 4831 5 561 e 33 s sall clilall paal 304) as
S Adle) (a2 53l Claal ety bl Jilas sk e W) LedDainy Gile slaall o8
Sila V) danl 8300)) ool eyl 38 Bay 35 pexiiasall 150 5ok e sl Ay gui) 2]

Al (e g il 13 LIS 5 Apal) Cilaeyll Jilas e Jeas A
e bl a8 Ak Ul aas @) 4 &l o) Cudl) Wl a0 da gl e
o328 (e IS 5 6 3 oA gl yall (8 Adaal) (Al Jil s alasiiuly gelipall (e ddlisad) il jlaa)

Q_U:AJ\ L"_ﬂj\:\.}j\

Distributed Malware Detection Algorithm cuew 4w lsa sl das byl oda Cald
Al AEEY) Sl ol g bl jalias apaad g bl Jidady o 685 43 5,1 sall 038 DMDA 1 bzl

bl e dais (e ST (6 se e bl a8 ghalie CadS dlee e ariell Lgaladii o3

& 523 Google Play (35w e 3 sdiall a5 5,0 Cilindad (e de e Ay) Al 038 4 ol
2005 bl JED jaae 150 2 Lee iS5 4ie it 21 &8 gukt S Gulad 100 e
3 S Taliae 56 (Ao Ll laaly Lewds el jall Cay yad aig B g i Adai g Uil colill) 388 adads

Ll ylaal (e sl o Al (o Lgia Ll a3 ol g 38

www.manaraa.com

Abstract

The importance of data stored on smart devices can make malware apps that are
trying to get this information to be exploited in either the data analysis and tracking
devices for the purposes of the owners of advertising or marketing purposes or for
blackmailing purposes of users. Increasing malwares has led to an increase in the
importance of research work on malware analysis and the discovery of this kind of

behavior.

This thesis is considered altered attack method, which distribute of the data source
and the point of loss of data on different versions of the app using local storage to

storing part or all of vital data to leak in future.

This thesis will introduce Distributed Malware Detection Algorithm (DMDA),
which is an algorithm to detect distributed malware on app versions and propose

new way to analyze application against redistributed malware.

DMDA created to analyze the data and identify transitional losses points that are
used to gloss over the algorithm sources.

We test this algorithm on a sample of Android applications published on the
Google Play market containing 100 application; every application has two version
of it. The algorithm was revealed 150 transient data source, 200 transient loss of
data point and 2 leakage of data. This dataset was checked by 56 anti-malware and

none of them find any malicious code.

www.manaraa.com

Dedication
To my parents, my family, my wife and to my baby Mohamed

www.manharaa.com

Acknowledgement
I would like to acknowledge my thesis supervisors Dr. Aiman Abu Samra for his

guidance and valuable help. I also want to acknowledge my college Mahmoud Al-

kurdi who is help me with valuable resources.

www.manharaa.com

Contents

ALl e 2
Y o1 o - Tox TP PSP OTROPRT 3
D=L | Tor 1 4T] o IR O O USUPRTOURTI 4
Vol qaTe) VY] F=To F= =T o o T=T o | PRSP 5
S [) [oo [¥ T 4T o IO OO PRSP SOUOPPPRON 9
1.1 1] ool Y =T 9
1.2 RESEAICH QUESTION . .eeiieiieetie ettt st e st st e e s e e s e e s b e e e nne e eesaneeesareeenneeas 10
IS B P o 11 1= ol USSR 11
1.4 THESIS SEIUCTUIE ..eeiiiiiiiie ettt ettt ettt e sa e st e s bb e e abe e sabeesbbeesabeesabeesabaeen sabaesnbeesabaeenseenn 11
2- Background and ReElated WOIKcoccuieiiiiiiee ettt e e et e e e rae e s s aaa e e e e et rree e ennnees 13
2.1 ANDROID BACKGROUNDcotiiiiiiiittttee ettt e e e e e e ettt e e e e e st et e e e e s e s nnreeeeeesesannneneeeeaeaaasesenannns 13
2.1.1 Android System ArChitECIUIEuviiiiee et e e e e rrrr e e e e e e e e e 13
2.1.2 Android Application ENtry POINTS.....ccci i e e e e e aea e 14

AL ACTIVITIES . cciiiiiii i e 15

B. SEIVICES ..ottt e b 15

C. BroadCast RECEIVETc.uii ittt sr e s e s e s sme e e s b e e sbeeeesanenesaneesanes 16
2.1.3 Android Application SEIUCLUIEviiii it e e e s s sbee e s e e e nanes 18

2 1A DEIVIK VIM ettt ettt ettt ettt s be e st st st st sb e e n e e re e sae e s sane e 18
2.1.5 ANAroid STOrage OPtiONS...ccccceiiiiirriieeeeeeececirte et e e e eeeebrreeeeeeesesarreeeeeeeesasarareeeeeesasssssaseesareeeeens 19

2.2 ANAIOId MAIWATIES...c.ueieieeiieieette ettt ettt ettt b e b e b e s bt e s be e s bt e satesatesatesabe e bt e sbeenaeesaeesanesane 20
2.3 REIAEEA WOTK .ttt et s e s b e e b et e ne e e sar e e e snre e s re e e sareeeares 22

B T B - A ol AV - | LY [PSP 24
2.3.1. 1 FEATUIE BASEA ...ttt ettt st st st s e st e s 24
2.3.1.2 SErUCEUIE BaSEU.....eeiieiiiiiiiieeite ettt ettt ettt st st st st st st e bt e b e sbnesanesaneeane 25
2.3.1.3 Program Dependency Graph (PDG) Bas@d........ccuueeeeiiiiieiiiiieeecieeeecree et e e ivee e e 26

Y 0 Y 4T 1 29
3= RESEAICN TOOIS ..ttt st ettt e st e s bt e e sab e e sabe e s be e s be e e s bt e e sateesneeesareeas 30
3.0 ROVEISE ENGINEEOIINEG ... ettt s st ssss s bs st se bt s e st ee s anananannnn 30
I Y = L Lol Y =1 1YL L SR 31
I N O | L= =Y o] o (2 ISP 33

33 VN A L A LR n e aeaenenthe et et st et seneeeee e ann 35

R IR Y or-T g Vo [o] o IO TSP VPR PR 36

6

www.manaraa.com

R T [T 4 1= 1 OO 37

4- Methodology Evaluation and ANalYSiS........ciccciiiiieie e e e e e e e srrrr e e e e e e e e e nnnes 38
B R 1LY T N AN P g] o o TSP 38
I =Y 4T o T o T T PP PPPRUPRN 38
4.1.2 Attack model (Distributed Malware Attack Model)c..ueviviiiiiiniiiieccee e 40
4.1.3 DIMIDA AlGOTITNM ..ttt ettt et e e et e e e e rbte e e e s baeeeesntaeeesrtaeessnsaeeeseesassaeaesnns 41

oy [y oY o] L= g =T o1 - 4 o o PR 46
0y 000 NN To [o o I =1 Y 4 Y oo 1} 4RSS 46
4.2.2 SOUICE AN SINK ittt ettt ettt e st e e st e e sabe e s bt e s sbbeesabeesabeesabaeessbeaesseeesabeesnses 46
4.2.3 Transient SOUICES and SINKS.......cocuiiiieriieiieiee ettt e e s e saee s ereeneeens 49
A.2.4 EXCIUSION ISt .einntiiiiiiiieieeette sttt sttt st st st sttt et e et e e b e sme e st e eneeenneens 50
R [g o1 =T 0 L= g1 €= 4 o o USSR 51

4.3 Experiment: Malware deteCtionuuviiieii et e e e e e e et ar e aaeaaaeean 52
4.3.1 Attack MOl EXPIrMENT ...uvviieieeiieiciiiieeee e eccctrte e e e e e eerrreeeeeeestbbaeeeeseeessssraaaeeeeessnsssnnssreaeeeaeens 52
4.3.2 Effectiveness OF DDIMIA ...ttt ettt sttt st st sttt et ettt e bt esbeesbee s emeeenneenneens 53
5- Conclusion @nd FULUME WOTK ...c...eiiiiiiiiie ittt ettt e s e s b e s e snenesaneeens 55
RETEIENCES ...ttt ettt e bt e st e s bt e e s ab e e s abe e s beeesabeesabeesabee e s beeebeeesnbeesareeesnreesares 57
AN o] 01T e [ol Y- RSP SURRN 61
FiY o] 01T e 13 TR PPPP 61

Y oY1= oo [l = PR SRR 64

7

www.manaraa.com

Figures

Figure 1 Android Architecture (Source Android developers) [8]......ccovieiccieeeiciiee e 14
Figure 2: Activity Lifecycle (Source Android developers) [10]cccceeevereiereiieesiee e ereeeseee e e eeee e s 17
= VT Ie RN - [ol 1V Lo Yo L] SR 41
Figure 4: DDMA AlgOrithm s IMOTEL.......cc.uviiiiciiie ettt et e e et e e e ra e e e e ar s araeeeennreee s 44
Figure 5: DDMA Algorithm™s FIOWCNAItcocviiiiiiecie ettt et e snree e 45

www.manharaa.com

1- Introduction

1.1 Topic Area
Smart phones are becoming more integrated and important part of people’s daily

lives due to their highly powerful computational capabilities, such as email

applications, online banking and online shopping...etc.

Malware, short for malicious software, is one of the major security threats in
information systems. Malware includes viruses, worms, Trojan horses, spyware,

dishonest adware, most root kits, and other malicious and unwanted software [1].

Android is an OS for smart phone owned by Google Inc, Google wants Android to
become dominant in smart phone field, so they create their market to be an open
market for developers with easy conditions for publishing new apps. In addition,
Google opened Android for company solutions —companies can deploy their own
modification on Android OS, Also Google allows Android's users to install apps
from other markets —there is a lot of android markets like Amazon store, SildeMe,
Aptoide,...etc - and even form a website —unknown source-.This makes android a

great environment for developers, marketers, users and companies.

This tremendous increase unfortunately, also makes android target for Malware
applications and application's thieves. Malware applications become the main
threat field because of large custom and private data can be collected form user

smart phones like Identifiers Disclosure - individually phone number, International

www.manaraa.com

Mobile Equipment Identity number (IMEI)-, SMS, call log , contacts, browser
history, location and emails. In addition, Malware can misuse SMS for Premium

messages and root exploits. [2, 3, 4, 5]

In addition to malware android is a hot business field for developers also repackage
app can threat their businesses. There are several ways developers may lose
potential revenue: a paid application may be “cracked” and released for free, a free
application may be copied and re-released on other markets with changes to the ad
libraries or even in the same market with changes on interface and services. That

will cause ad revenue or paid price goes to the plagiarist.

1.2 Research Question
The popularity and adoption of Smart phones has greatly stimulated the

spread of mobile malware, especially on the popular platforms such as Android. In
light of their rapid growth, there is a pressing need to develop effective solutions.
General countermeasures to Android malwares are currently limited to signature-
based antivirus scanners, which efficiently detect known malwares, but they have
serious shortcomings with repackaged, refectories and redistributed. These maybe

on threads, on versions, on components or maybe on different applications.

So the question is how to detect these behaviors on apps?

10

www.manaraa.com

1.3 Significance
Tremendous increase of android markets make it easy for anyone to publish

apps and update these apps. There is also a rising danger associated with Malware
applications at mobile devices, so the problem of detecting Malwares is an
interesting topic. In fact, 86% of detected malwares are old malware repackaged in
new apps [6]. However, the fact all antimalware and antivirus focus on the current
app version and they do not count malwares distributed on different versions of the

same application.

In this research, we introduce a way to detect distributed malware on app
version application and propose new way to analyze application against

redistributed malware.

1.4 Thesis Structure
This thesis is organized as follows:

Chapter 1; Introduction: In this chapter thesis provides an introduction about
thesis problem, questions and significance, this chapter describes why we choose

this title for thesis and the idea of proposed solution.

Chapter 2; Background and Related Work: This chapter provides a background
about Android system, application and programming. It also talks about malwares
in general and malware in Android applications, at the end of this chapter there is a

group of related work in the same topic of this thesis.

11

www.manaraa.com

Chapter 3; Research Approach and Tools: This chapter describes in theoretical
view the most important used tools in this thesis; it provides readers with

description about used applications.

Chapter 4; Attack model: This chapter describes the model assumed on attack and

the 1dea of distribution malware behavior.

Chapter 5; Methodology Evaluation and Analysis. Here readers can show the used
methodology for thesis, and how we prove the feasibility of our idea, details of
DMDA algorithm, this chapter also provides details about experiments and it

results, in addition, it provides more details about algorithm.

Chapter 6; Conclusion and Future Work: A complete conclusion has been written

in this chapter; also, we talked about future work related to his topic.

References: this chapter is a list of all sources associated with thesis.

Appendices: In this chapter, author attaches sample on the attack thread and code

implementation for the proposed algorithm.

12

www.manaraa.com

2- Background and Related work

2.1 ANDROID BACKGROUND
Android is a modern mobile platform that is designed to be truly open

platform. Android developers use advanced hardware and software, as well as local
and remote data, exposed through the platform to bring innovation and value

applications to consumers.

2.1.1 Android System Architecture
The architecture of Android is implemented as a software stack, customized

for mobile devices. Figure 1 Android some of the most important components of

this stack [7].

The core of the Android platform is a Linux kernel. The kernel is
responsible for handling device drivers, resource access, memory process, power
management and other typical OS duties. The kernel also acts as an abstraction

layer between the hardware and other software stack.

On top of the kernel are several native C/C++ libraries and Dlaivk VM. On
the top of this layer there is Application framework of android which is responsible
of managing android component lifecycle and interaction between android
applications and low level APIs like media framework, OpenGL and etc.. On top
of application framework there is application layer which contains contact, phone,

SMS and E-mail applications.

13

www.manaraa.com

2.1.2 Android Application Entry points
Android provides a Software Developer Kit (SDK) to developers. This SDK

exposes the API needed by developers to build applications. Unlike java
application, that has one entry point for application —main method- and works on
one program architecture, android application has multi-entry point and works on

message passing architecture. These multi entry points are:

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWDREK

Window Content View

ACCVIEy TIanager Manager Providers System

Telephony Resource Location Motification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQUite Core Libraries

Framework

e

Machine

SGL S50 libe —‘

LiNux KERNMNEL

OpenGL | ES FreeType WebKit

Display

Flash Memary Binder (IPC)
Driver

Camera Driver -
: Driver Driver

Audio Power

» 4 T -
Keypad Driver WiFi Driver Drivers Management

Figure 1 Android Architecture (Source Android developers) [8]

14

www.manaraa.com

A. Activities
In Android, an activity is an essential components of an application. Every

visual application should at least have one activity, the “main” activity even
Launcher app-special application which is running when android user open their
device- contains activity. Usually, an application has many activities and these can
start each other, where each activity holds its state (e.g. start, stop or pause). An

activity is the component that provides graphical user interface (GUI) for users.

Activity is one of the most complex and important component in android,
android framework focuses on making activity optimized for users —by optimized
battery and memory usage- and fixable for developers —by lifecycle callback- as
much as possible. Figure 2: Activity Lifecycle explain how android framework
manage activity lifecycle, onCreate and onDestroy called when activity start lives
in memory and when activity ready to remove from memory. Onstart and OnStop
called when activity start showed to user and hidden from user. OnResume and
OnPause called when activity gain and lose focus of user. OnRestart called when
activity started after stopped. Those are the main callback in activity lifecycle and

there is others but less important [9].

B. Services
Services are components in Android that do not provide any user interface, and

always run in the background to process long running operations. Services are

15

www.manaraa.com

starting by other components —even in other applications- , so other component as
activity or service can start a service. Android defines two types of Service
bounded and unbounded. Bounded service life is independent on the component
that started it. Unbounded Service does not depend on any component and any

component can starting or stopping it.

C. Broadcast Receiver
Broadcast receiver is a mechanism that defines how Android operating system

forwards its events to applications. The main usage of these broadcast receivers is
inter-process communication and tracking of specific events (e.g. arrival of an
SMS). Applications declare statically or dynamically their interest in receiving a
certain event and accordingly the OS will try to deliver this event when it happens.

Android defines two types of Broadcast Receivers: ordered and normal.

The normal Broadcast receiver is asynchronous and there is no order
according it, which applications registered to get a broadcast, would receive the
event first. As for the ordered ones, a priority can be set to require from the system
to deliver the event to each app in a certain sequence, and some apps will get the
event before others. This feature allows developers to capture and possibly modify
the event's carried data before it reaches to lower-priority consumers. In order

case, an app can prevent other apps from getting specific event by aborting the

16

www.manaraa.com

received data. Broadcast on android is one type of messaging on message passing

architecture where sender send message to group of receivers.

onRestart()

User navigates
to the activity

Another activity comes
into the foreground

e User returns

v to the activity

Apps with higher priority J
need memory onPause() |
|

The activity is
no longer visible

User navigates
v 10 the activity

onStop() - J
|
The activity is finishing or
being destroyed by the system

v
onDestroy()

-

Figure 2: Activity Lifecycle (Source Android developers) [10]

17

www.manharaa.com

2.1.3 Android Application Structure
Applications in android platform distributed in files called Android Packages

(APKs). These files contain everything that the application needs to run from
resources like images and XML files specifying Ul layouts to the application code
and metadata about what is the component of the application. APKs also include a
manifest XML that specifies a number of metadata about the application, including
its name, version information, the package (or namespace) of the code, the
permissions it requires to execute, the component it contains and much more.
Android applications are primarily developed in Java, sometimes native code may
be used. The Java source code compiled to Java byte code and then converted into
the Dalvik executable (DEX) format. Although similar to Java byte code, DEX
byte code is incompatible with the Java virtual machine and instead runs on the
Dalvik virtual machine. The conversion of Java byte code to DEX byte code is

easily reversible and there are several tools can handle it.

2.1.4 Delvik VM

Android allows developers to run their application on top of virtual machine
—known as Delvik VM-. Delvik VM created to handle limited memory size —about
60 MB only- this kind of VM can't handle standard byte code files .class even
compressed files .jar because of its limited size. It needs special pre-processing so
it replace .jar .class with classes.dex and apk files. Those kind of files replace

every string, every method name and every class name by id and lookup table. This

18

www.manaraa.com

strategy reduce data loaded in memory and keep more rooms to the actual data in

the application.

Android VM A.K.A Sandbox is a tool used in inter-application separation;
every application runs in android must running alone on one VM. VM doing inter
application division by two ways. First, every app has its different user ID. Second,

every app is using its manifest file for to determine specific permissions.

VM Actually opens the gate of reverse engineers to reverse apks to
classes.dex and resources. Again, reverse class.dex to classes, which mean inject

malware behavior or ads in real and healthy app.

2.1.5 Android Storage Options

Android provides several options for you to save application data. The
option you choose depends on your application needs, such as whether the data
should be private to your application or accessible to other applications (and the

user) and how much space your data requires etc...

Android data storage options are the following: Shared Preferences, Internal
Storage, External Storage, SQLite Databases and Network Connection [7]. The
Shared Preferences provides a general framework that allows saving and retrieving
persistent key-value pairs of primitive data types. Shared Preferences can used to

save any primitive data: Booleans, floats, integers, longs, and strings. This data

19

www.manaraa.com

will persist across user sessions. Internal Storage can used to save files directly on
the device's internal storage. By default, files saved to the internal storage are
private to your application and other applications cannot access them (nor can the
user). When the user uninstalls your application, these files are removed. External
Storage are world-readable and can be modified by the user. SQLite Databases
used to save structural relation data and retrieve them using SQL standard with
integrity constraint and indexing to fast retrieval when there is many data. In
addition, android has versioning mechanism to upgrade and downgrade database,
which help application to extend their data structure [11]. Network can used (when

it is available) to store and retrieve data on your own web-based services.

Android provides a way to expose even your private data to other
applications — with a content provider. A content provider is an optional
component that exposes read/write access to application data for other applications,

subject to whatever restrictions you want to impose.

2.2 Android Malwares
Malicious software is referred to as malware, classified by its nature as

either computer virus, Trojan horse, worm, backdoor or rootkit. The most

common malware types [12] are:

20

www.manaraa.com

Virus: Code that that inserts itself into another program and replicates, that is,
copies itself and infects other computers. Nowadays often used as a generic term

that also includes worms and Trojans horses.

Worm: Self-replicating malware, which copies itself to other nodes in a network
without user interaction using vulnerabilities. Worms do not attach themselves to

an application like a virus do.

Trojan horse: Malicious program, which masquerades itself as being an

application. Unlike viruses and worms, it does not replicate itself.

Rootkit: Software that enables continued privileged access to a computer while
actively hiding its malicious activity from administrators by modifying the

operating system functionality.

Backdoor: Specialized Trojan horse that masquerades itself as an installed program
to enable remote access to a system and bypassing normal authentication.

Additionally, backdoors attempts to remain undetected.

Spyware: Software that reveals private information about the user or computer

system to eavesdroppers.

Bot: Piece of malware that allows the bot master, i.e. the author to remotely the

infected system. Groups of infected systems that are controlled, which are denoted

21

www.manaraa.com

as botnets, instructed by the bot master to perform various malicious activity such

as distributed denial of services, stealing private information and sending spam.

2.3 Related work

Mobile security issues have gained much attention recently. Malware are
available on both the official Android market and alternative ones [13]. Research
efforts were made on detecting repackaged apps [14] or apps with known
malicious behavior [15, 16]. Google also launched its malware filtering engine
[17]. Information leakage is another major security threat for mobile devices. Kirin

[18] detects apps whose permissions might indicate potential leakage.

In general, information leakage detection reveals the potential out bound
propagation of sensitive information, which might be benign in many cases.
Instead, component hijacking detection captures the information leakages resulted

from an exploitation (i.e. sensitive data theft), in addition to other hijacking types.

Enck et al. introduced Ded [19] to convert Dalvik bytecode back to Java
bytecode, and then used existing decompilers to obtain the source code of the apps

for analysis.

Android mediates access to protect resources using a permission system.
However, it's effectiveness hinges on app developers correctly implementing it.

Chin et al. showed that apps might be exploitable when servicing external intents

22

www.manaraa.com

[20]. They built ComDroid to identify publicly exported components and warn
developers about the potential threats. For that, ComDroid checks app metadata

and specific API usages.

As a result, warned public components are not necessarily exploitable or
harmful (i.e. the openness can be by design or the component is not security
critical). On the other hand, Android permission system is subject to several
instances of the classic confused deputy attack [21]. As demonstrated by [22 <23 «
15], an unprivileged app can access permission-protected resources through
privileged apps that do not check permissions. Grace et al. [15] employed an intra-
procedural path-sensitive static analysis to discover permission leaks specific to

stock apps from multiple device vendors.

Malware detection in general has two track static analysis and dynamic
analysis. As Android applications are largely interactive and have a lot of
interference between their components, dynamic detecting malware code would
face scalability limitations as TaintDroid [24], where authors had to interact
manually with each application. This eliminates techniques such as [25, 26, 27, 28]
for detecting Android’s malwares applications. Therefore, we concentrate in this

research on static analysis.

23

www.manaraa.com

2.3.1 Static Analysis

Static analysis 1s an analysis of program application without executing the
program. Static analysis of malware android application has three main
categorization: Feature Based, Structure Based and Program Dependency Graph

(PDG) Based.

2.3.1.1 Feature Based

Feature based approaches analyze a program and extract a set of features.
Similarity between program and malware is detecting by comparing the extracted
features from the programs. The features choice can vary significantly, from

number or size of classes, methods, loops, or variables to included libraries.

Tesfay et Al. [29] Provided Anti-malware cloud that contains reputation for
every version of every application using APK’s hash code and depends on user
Anti-malware reputation. Actually, there approach cannot handle repackaged
APKs because simple change like space or comma in the APK content means

completely different hash code.

This approach is limited -even with Al still need more investigation [30, 31]-
and not realistic because it discards too much information about the structure of the

programs.

24

www.manaraa.com

2.3.1.2 Structure Based
Structure based systems convert programs into a stream of tokens and then

compare the streams between two programs. By converting programs into a stream
of tokens and ignoring easily, changed constructs such as comments, whitespace,
and variable names, structure based systems detect plagiarism more robustly than

feature-based systems.

Zhou et Al. [14] They work on DroidMOSS framework, it adopt a
specialized hashing technique called fuzzy hashing. Instead of directly processing
or comparing the entire (long) instruction sequences, it first condenses each
sequence into one much shorter fingerprint. The similarity between two apps

calculated based on the shorter fingerprints, not the original sequences.

Even when the does not depend on absolute hash map and replace it with
Fuzzy hash map [32, 33] it still face difficulty to detect repackaged apps with small

simple refactoring method

Schleimer et Al. [34] they attempt to find plagiarism with modifications
using k-grams, by finding common token substrings of length k. If the differences
between the programs are relatively infrequent or tend to be greater than k tokens

apart then the comparison, will find many k-length token streams in common.

25

www.manaraa.com

This approach also has a problem because insertion more than k instruction -
even when those instruction are naive and does not modify any behavior or flow-
this approach will be failed to detect relation between the produced malware and

the original one.

Unfortunately, even when these techniques has result better than feature

based, it still vulnerable to addition or deletion of byte code instructions.

2.3.1.3 Program Dependency Graph (PDG) Based

In Apps There are two types of dependencies: data and control. Statement s1
has data dependency on statement s2 if sl contains variable v, which v value
changed in s2. On the other side, statement s1 has control dependency on statement

s2 1f' s2 decide if s1 executed or not.

Crussell et Al. [35] working on detection clones of android apps, they
exclude famous libraries as com.facebook.android and com.google.admob using
shal hash to be sure these libraries untouched. After that, they create PDG for
every method and apply losseless and lossy filters for every method pairs in the
two apps. Lossless filter removes methods smaller than 10 nodes and lossy filter,

which discards method pairs that are unlikely to match due to a difference in the

distribution of types of nodes in the two PDGs. After that, they apply VF2

26

www.manaraa.com

algorithm to compute subgraph isomorphisms. Finally, they calculate similarity of

the two application and decide if these apps are clones or not.

This approach is good to determine clones but unfortunately, it has some
back doors. First lossless filter can attacke by divide large method to smaller ones.
They do not take noisy code in their account. Second it is good for clones but it
takes too much time for malware detection and can't find relation between

malware and malicious app

Crussell et Al. in [36] they work on AnDarwin framework its design done on
four stages: First, it represents each app as a set of vectors computed over the app's
Program Dependence Graphs, split into connected components as multiple data-
independent computations. Second, it finds similar code segments by clustering all
the vectors of all apps. Third, it eliminates library code based on the frequency of
the clusters. Finally, it detects apps that are similar, considering both full and

partial app similarity.

CHEX [37] is a tool to detect component hijacking vulnerabilities in
Android applications by tracking taints between externally accessible interfaces
and sensitive sources or sinks. Although it does not built for the task, CHEX can be
used for taint analysis. CHEX does not analyze calls into Android framework itself

but instead requires a model of the framework. CHEX’s entry-point model requires

27

www.manaraa.com

an enumeration of all possible “split orderings”. Furthermore, CHEX is limited to

at most 1-object-sensitivity.

LeakMiner [38] analyzes Android apps on market site. Thus, it does not
introduce runtime overhead to normal execution of target apps. Besides, Leak
Miner can detect information leakage before apps are distributed to users, it
implements the Android lifecycle but the analysis is not context-sensitive - A
context-sensitive analysis is an interprocedural analysis that considers the calling
context when analyzing the target of a function call. In particular, using context
information one can jump back to the original call site, whereas without that
information, the analysis information has to be propagated back to all possible call

sites, potentially losing precision-.

AndroidLeaks [39] also state the ability to handle the Android Lifecycle
including callback methods. It is based on WALA’s context-sensitive System
Dependence Graph with a context-insensitive overlay for heap tracking, but it
taints the whole object if tainted data is stored in one of its fields, i.e., is neither
field nor object sensitive. This precludes the precise analysis of many practical

scenarios.

SCanDroid [40] is a tool for reasoning about data flows in Android

applications. Its main focus is the inter-component (e.g. between two activities in

28

www.manaraa.com

the same app) and inter-app data flow. This poses the challenge of connecting
intent senders to their respective receivers in other applications. SCanDroid prunes
all call edges to Android OS methods and conservatively assumes the base object,

the parameters, and the return value to inherit taints from arguments.

EPICC [41] proposes a string analysis for inferring inter component
communication specifications. These include inter component communication
entry and exit points, information about the action, data and category components

of intents used for inter component communication, as well as Intent key/value

types.

2.4 Summary
There is many research efforts on Android malware detection, repackaging

app detection, cloning apps detection and leakage information detection. They
cover inter-process communication, permission up-used, information leakages and
harmful operation but they do not discuss the idea of leakage information on multi
app version. On our research, we will discuss this idea and create a tool to detect

these leakages.

29

www.manaraa.com

3- Research Tools
Malwares for Android application are considered as one of the most growing

problems, so there must be a new techniques and tools to detect these malwares. In
fact there are many antiviruses’ tools in today market to detect malware using
either static or dynamic analysis, In this chapter a scientific view will be presented

for algorithms and techniques used for this research.

3.1 Reverse Engineering
Reverse Engineering is a process of analyzing program code or software in

order to test it from any vulnerability or any errors. Reverse engineering is the
ability to generate the source code from an executable code. This technique is used
to examine the functioning of a program or to evade security bugs, etc. Reverse
engineering can therefore be stated as a method or process of modifying a program

in order to make it behave in a manner that the reverse engineer desires.
Joany Boutet has quoted Shwartz, saying,

“Whether it's rebuilding a car engine or diagramming a sentence, people can learn
about many things simply by taking them apart and putting them back together
again. That, in a nutshell, is the concept behind reverse engineering -breaking

something down in order to understand it, build a copy or improve it * [42]

From the beginning of 2009, research scientists began proposes tools for

reverse the DalvikBytecode. One of them is undX tool which could generate a JAR

30

www.manaraa.com

file from an Android APK file, then convert to JAVA using tools such as JAD and
and JD-GUI. The undX tool worked well with basic applications; but it posed
many problems when dealing with complex Dalvik Bytecode. The Dex2Jar tool
originated then. Dex2Jar does similar job to undX; but this tool also has some

issues while dealing with complex Dalvik Bytecode.

The application, in its pre-compiled binary format, is distributed and hence it
is not possible to directly debug the source code but there are disassemblers that
convert or reverse the Dalvik Bytecode into readable format. The binaries for
Dalvik Virtual Machines are in the .dex format. Backsmali [43] 1s a disassembler
that is used for .dex files in Dalvik VM. Backsmali convert .dex file to

intermediate language with full support of .dex and without lose anything.

3.2 Static Analysis

Static analyses inspect code to derive information about the application’s
behavior at runtime. Every application has variables (inputs from a user, files,
internet etc.) an analysis has to abstract from concrete program runs. Static
analyses aims to cover all possibilities by making assumptions. The properties
derived from these assumptions can be weaker than the program’s properties
actually are, but they are guaranteed to be applicable for every program run. In this

way, static analysis detects an application behavior, which might not actually

31

www.manaraa.com

happen during runtime, but it does not miss a behavior, which can happen during

runtime (i.e. privacy invasion).

In general, there are two different approaches to static analysis: type systems
and data-flow based approaches. Type systems assign properties to components of
the application and checks whether they are going to hold during run time. Data-
flow based is a technique for gathering information about the possible set of values

calculated at various points in an application.

Modern sophisticated tools convert the input (either bytecode or source
code) to intermediate representations on which they can efficiently operate. To
model the program flow they create control-flow graphs (CGF) and call graphs.
CGF represent intra-procedural sequences of statements, call graphs contain edges

between a call site and the call target.

Usually it is not possible to determine these targets unambiguously: The
method invoked by the call site can refer to the implementation of the class
specified in the call site or any other subclass. For example, a class A defines the
method m() and has a subclass B. The call site x.m() can either refer to the
implementation of A or B, depending on the initialization of x, which might not be

statically resolvable.

32

www.manaraa.com

3.2.1 Call graph (CF)

A call graph is a directed graph that represents calling relationships between
functions in a computer program. Specifically, each node represents a function and
each edge (f, g) indicates that function f calls function g. Thus, a cycle in the graph

indicates recursive function calls.

Call graphs are a basic program analysis result that can be used for human
understanding of programs, or as a basis for further analyses, such as an analysis
that tracks the flow of values between functions. One simple application of call

graphs is finding functions that are never called.

A static CG i1s a call graph intended to represent every possible run of the
program. The exact static CG is an undecidable problem, so static call graph
algorithms are generally over-approximations. That is, every call relationship that
occurs is represented in the graph, and possibly some call relationships that would
never occur in actual runs of the program. CG can be resource consumers in
construction process, visiting call nodes and memory storage or example,
constructing the CG of a Java “Hello, World!" program using Spark [44] can take
up to 30 seconds, and produces a CG with 5,313 reachable methods and more than
23,000 edges. Because of that, CG can be defined to represent varying degrees of
precision. A more precise CG more precisely approximates the behavior of the real

program, at the cost of taking longer to compute and more memory to store. The

33

www.manaraa.com

most precise CG is fully context-sensitive, which means that for each function, the
graph contains a separate node for each call stack that function can be activated
with. A fully context-sensitive CG is called calling context tree. A calling context
tree can be computed dynamically easily, although it may take up a large amount
of memory. Calling context trees are usually not computed statically, because it
would take too long for a large program. The least precise call graph is context-
insensitive, which means that there is only one node for each function. This is a
tradeoff problem will be shown in the following example
public class Examplel {

public static void main(String[] args) {

String sl=newlLine("hello");

String s2=newlLine("world");
System.out.println(sl.concat(s2));

}
public static String newlLine(String input)

if(input.equals("hello"))

return tab(input.concat("\n"));
else

return input.concat("\n");

}

public static String tab(String input) {
return input.concat("\t");

34

www.manaraa.com

Codel is simple java application contains three method to clarify context
sensitivity levels no context sensitivity every method has only one node for method
in simple words there is no different between call happened on tab call in newline
and call happened on newline. On the other hand, context sensitive CG has node
for every method call happened this gives more information about the context this

method called on it.

3.3 WALA

Watson Libraries for Analysis (WALA) is a framework provides static and
dynamic analysis capabilities for Java bytecode and related languages and for
JavaScript. WALA is licensed under the Eclipse Public License. The initial WALA
infrastructure was independently developed as part of the DOMO research project
at the IBM T.J. Watson Research Center. In 2006, IBM donated the software to the

community.
Core WALA Features
WALA features include:

1- Java type system and class hierarchy analysis

2- Source language framework supporting Java and JavaScript

35

www.manaraa.com

3- Interprocedural dataflow analysis (RHS solver)
4- Context-sensitive tabulation-based slicer
5- Pointer analysis and call graph construction
a. Several algorithms provided (RTA, variants of Andersen’s analysis)
b. Highly customizable (e.g., context sensitivity policy)
1. ZeroCFA context insensitive
1. ZeroOneCFA context sensitive

c. Tuned for performance (time and space)

6- Static single assignment form SSA-based register-transfer language IR
a. SSA exsit on wala for Java and Java Script
b. Anyone can extend it and IR for other languages

7- General framework for iterative dataflow

8- General analysis utilities and data structures

9- A bytecode instrumentation library (Shrike) and a dynamic load-time

instrumentation library for Java (Dila).
10- Robustness, Efficiency and Extensibility.
3.4 Scandroid

SCanDroid [40] is a tool for reasoning about data flows in Android
applications. Its focus is the inter-component (e.g. between two activities in the

same app) and inter-app data flow. This poses the challenge of connecting intent

36

www.manaraa.com

senders to their respective receivers in other applications. SCanDroid prunes all
call edges to Android OS methods and conservatively assumes the base object, the

parameters, and the return value to inherit taints from arguments.

Scandroid one of the first tools created to static analysis for android apps
they tried to create automatic security certification for android application.
SCANDROID’s analysis is modular to allow incremental checking of applications
as they are installed on an Android device. It extracts security specifications from
manifests that accompany such applications, and checks whether data flows

through those applications are consistent with those specifications.

They converted android byte code of delvaik VM to SSA-instruction
compatible with intermediate representation (IR) form of WALA and make
WALA framework able to use for static analysis for android applications. They

make their source available on github.

We use their conversion of android byte code to IR, which is perfect, and
used by almost all static analysis tools using WALA framework for android static

analysis.

3.5 Summary
This chapter describes in theoretical view of the most important used tools in

this thesis; First a scientifically description about static analysis and call graph

37

www.manaraa.com

concepts has been discussed then a complete description about WALA framework
with its usage and features has been provided and finally information about

Scandroid and its implementation for android delvik byte code to WALA IR.

Those tools are used with reverse engineering as tool to insure results of

these tools are precise and correct.

4- Methodology Evaluation and Analysis

In this chapter a methodology, experiments and thesis proposed algorithm
will be discussed. In Section 5.1 discuss our proposed algorithm named Distributed
Malware Detection Algorithm we create to solve leakage information over
versions of application, Section 5.2 discuss implementation and used entry points,
sources, sinks, transient sinks and transient sources , Section 5.3 is the experiment

and evaluation, . Finally, section 5.4 is Summary for chapter.

4.1 DMDA Algorithm

In this thesis, we propose a new method to detect malwares distributed over
application versions. Versioning will help malwares, which are leak information -
Appendix A have example- and malwares can be divided to steps. The algorithm

proposed will help to detect these malwares using call graph and pointer analysis.

4.1.1 Definitions
Definition 1 (Entry Point)

38

www.manaraa.com

An Entry point is the point where operating system enters a program. In
many programming languages, the main function is where a program starts its
execution. Android is operating system with multiple entry point. Activity

onCreate method is entry point.

Definition 2 (Source)

Source is calls into resource method returning non-constant value into the
application code. This value is valuable to user privacy or user life. Example
getDeviceld() resource method is an Android source. It returns a value (the IMEI)

into the application code.

Definition 3 (Sink).

Sink is calls into resource method accepting at least one non-constant data
value from the application code as parameter, if and only if those parameters go
out the application. The sendTextMessage() resource method is an Android sink as

the message text are possibly non-constant and goes to phone number.

Definition 4 (Transient Source)

Transient Source is calls into resource method returning non-constant value
stored into local storage to the application code. This value is valuable to user

privacy or user life. Example retrieve data from local database.

39

www.manaraa.com

Definition 5 (Transient Sink)

Transient Sink is calls into resource method accepting one non-constant data
value from the application code as parameter if and only if those parameters goes

to local storage resource. Example saving contacts information on local database.
Definition 6 (Leak)

Leak is a call graph path where start in Source resource and end to Sink

resource. Example Application send contacts data to internet website.
Definition 7 (Transient Leak)

Transient leak is a call graph path where start in Source resource and end to
transient Sink resource. Example Application save contacts data into local storage

media.

4.1.2 Attack model (Distributed Malware Attack Model)

Android is an open environment for development but this make it a field for
malwares as demonstrated by [22 <23 <15]. Those researchers talked about misuse
permissions, Exploiting over permissions by malicious applications and data leaks.
Many researcher efforts talking about it as mentioned on chapter 2. Their efforts is
focused on one version of android application. But android OS and many of
android markets including Google Play market support versioning on android

application [45] through android-mainfest.xml attributes android:versionCode and

40

www.manaraa.com

android:versionName so it is simple to malware producer to distribute its malware
on multi-version of android application. Version one got the data from android OS
ex. contacts and SMSs and stored it on its own data, and on version two remove
the code was responsible to store these data and add other code which is misuse

these information like leak these data to internet.

4.1.3 DMDA Algorithm

Leakage

Transient
Source

Figure 3: Attack Model

In the section we describe DMDA algorithm created to detect, malware apps
distribute their malware behavior on their versions So these application split their
Source and sink methods into two versions or more using transient sink and

transient source.

41

www.manharaa.com

Figure 3: Attack Model shows attack model, DMDA algorithm design to
detect. This model distributed its source and sink into two different versions of the
app.

DMDA algorithm steps are

1- Determine entry points of app version
2- Create call graph cg based on S where S is group of E and E is an entry
point. Cg will contains N where N is a group of nodes and D where D is a
group of edges
3- Visit call graph and determine PI —pure sink- , PO —pure source- ,
transient TI —transient sink- and TO —transient Source- nodes these
nodes.
4- Using [47] to solve dependencies and reduce reachability.
5- if v==1 then where v is the version of app
a. call findLeak
b. call findTransientSink
6- if transient think exist then
a. call savetransientSink
7- if v>1

a. call findTransientLeak

42

www.manaraa.com

b. call findLeak
c. call findTransientSink

d. saveTransientSink

findLeak procedure

1- if there is path between source and sink then leak is exist and this is a

malware app

saveTransientSink procedure

1- after finding transient sink check for possible paths used for this sink if
there is path to source this path will saved
2- save the key used to this parameter —example table name for inset

statement -

findTransientLeak procedure

1- if transient sink saved before have the same key of transient sink then this
transient leak do
a. replace transient sink with transient source paths stored before
2- else

a. ignore this transient source

43

www.manaraa.com

Figure 4: DDMA Algorithm shows the steps of DMDA algorithm in a simple way
represent the model present on attack model in Figure 3: Attack Model and shows

main idea of distribution and where main steps of algorithm happened.

Figure 5: DDMA Algorithm’s Flow shows steps of DMDA algorithm in simple

flowchart diagram. The diagram focused on main steps of algorithm like transient

sink and transient source.

Source

Leakage

Transient
Source

Figure 4: DDMA Algorithm's Model

44

www.manharaa.com

»
A
A4

Figure 5: DDMA Algorithm’s
Flowchart

45

www.manharaa.com

4.2 Implementation
This chapter explain DMDA algorithm implementation, entry points for

android application, sources, sinks, transient sinks and transient sources and how
WALA frameworks used to implement DMDA algorithm. The real code attached

on Appendix B to more details.

4.2.1 Android Entry points

Android is not like java android have multi-entry point those entry points are

the real start of building android app call graph. Entry points of android are:

1- Android.app.Activity: onCreate, onStart, onRestart, onResume, onPause,
onStop, onDestroy, onActivityResult, onRestorelnstanceState,
onSavelnstanceState.

2- Android.app.Service: onCreate, onStart, onStartCommand, onDestroy,
onBind.

3- ContentProvider: onCreate, query, insert, update, delete.

4- BroadcastReceiver: onReceive.

Those are the entry points Android OS can start android application from them and

those are the seed of call graph.

4.2.2 Source and Sink

46

www.manaraa.com

After determine entry points, must determine source and sink of our
analysis. Source and sink concept is a famous concept in privacy and data leak
analysis where data is a precious. Source is a method return a valuable data like
phone number, user SMSs, contacts, browser history etc.... Sink is a method leak

these data or misuse like send it over internet, SMS, Bluetooth etc...
For this research, we choose these Sources

1- Android.content.ContentResolver. query: this method used to query any
content provider on android app. It is one of the most famous sources on
android. Any developer with the right permission can query SMS, Contacts,
browsing history and other app data.

2- Android.location.LocationManager.[all methods]: this class is responsible to
location stuff contains GPS providers and location and last known plcae.

3- Android.telephony.TelephonyManager.[getNeighboringCelllnfo|
getCellLocation]: these methods return data about GSM cells these

information can leak user location.
In addition, these Sinks:

1- Android.app.Activity.setResult: this method used to respond on call of
startActivityForResult and it can leak data on it is parameter to other android

application.

47

www.manaraa.com

2- Android.app.Activity.[starActivity| starActivityForResult|
startActivitylfNeeded| startNextMatchingActivity| startActivityFromChild]:
these methods can leak data to other application on the intent send to start
their activities.

3- Android.content.ContentResolver.[query|insertjupdate|delete]: these
methods help developers to access Content Provider query, insert, update
and delete

4- Android.telephony.gsm.SmsManager.[sendTextMessage|sendDataMessage|
sendMultipartTextMessage]: those methods can leak data through GSM
messages.

5- Android.net.AndroidHttpClient.execute: this method can leak data through it
is parameter to internet.

6- java.net.HttpURLConnection.[getOutputStream| setRequestProperty]:these
methods can leak data through http request on header or body.

7- java.net.CookieManager. setCookie: this method can leak data through http

header called cookies.

Those are not all the sources and sinks on android those are the ones used on our

research to prove the idea there is other research doing hard work on this point [24,

19, 40].

48

www.manaraa.com

4.2.3 Transient Sources and Sinks
Transient sources and sinks are those methods used to store application data

into local storage. Those cannot consider as a pure sources and pure sinks because
they almost used to store clear data so considering them as a source or sink
probably result a false positive malware detection. But ignoring them lead to miss

malwares divided into application versions.
For this research, we choose the following method as transient Sink:

1- android.content.SharedPreferences.Editor[putBoolean| putFloat| putlnt]
putLong| putString| putStringSet]: shared preference used to persistent
primitive data or Strings and reuse them after a while. These methods can
transiently leak data through their second parameter.

2- android.database.sqlite.SQLiteDatabase[insert| insertOrThrow|
insertWithOnConlflict| replace| replaceOrThrow| update|
updateWithOnConflict]:SQLLite is a simple relational database used to
store complex data types and reuse them with fast query. These methods
can transiently leak data through their second parameter through their

parameter ContentValues.

For this research, we choose the following method as transient Source:

49

www.manaraa.com

1- android.content.SharedPreferences [getBoolean| getFloat| getint| getLong|
getString| getStringSet]: these methods used to retrieve data stored on put
methods. These methods can transiently been a source of data through
their return values.

2- android.database.sqlite.SQLiteDatabase[query| queryWithFactory|
rawQuery| rawQueryWithFactory]: those methods used to retrieve data
stored using update, insert and replace methods. These methods can

transiently been a source of data through their return values.

All these lists —sources, sinks, transient sinks, transient sources and entry points-
included on eAndroidSPec.java, which is, extend ISpec class one of scandroid

specifications.

4.2.4 Exclusion list
As described on this research call graph and static analysis is greedy for

memory even simple ones can take too much memory. Because of that WALA

have exclusion list, which used to exclude unimportant classes from call graph and
data flow analysis. We exclude famous used libraries and basic java packages. This
technique help WALA to reduce memory and increase productivity. The full list of

excluded packages in Appendix B.

50

www.manaraa.com

4.2.5 Implementation
Using WALA Framework help in implementation a lot of algorithm implementing

and available to extend and reuse. We use WALA call graph which depends on
graph reachability concept and Pointer analysis implementation using kidall's

Framework [49] to follow keys of transient source and transient sinks.

Kidall's Framework based on simple constant propagation this idea was created
firstly by Kidall in [49] to Discover values that are constant on all possible

executions, and propagate values.

Simply this algorithm steps are start on entry point, process this entry point and
produce constant propagation, send these information to all first successor of this
entry point, repeat this in next successors, merge these information —intersection
them- if the data on variable is different on two branches this variable are not

included on data return by the algorithm.

This algorithm used into extract keys used to store data in transient sink and

transient source.

Based on these algorithms we build two filters: Leakage Filter, which responsible
to detect leakage malware behavior and transient filter, which responsible to detect

transient leakage and replace transient nodes with the original code.

51

www.manaraa.com

Transient leakage filter build call graph with context sensitivity for string objects
after building call graph this filter search for transient source and check previous
list of transient sink if the key of transient source equal one of the these keys it
replace the statement with call graph saved for that key finally the filter search for

the transient sink and store them with their pruned call graph.

Leakage filter take the call graph built in transient leakage filter, start searching of
paths connect source, and sink if there is a path or more then this filter recognize

this app as a malware.

4.3 Experiment: Malware detection
In this section, two experiments made to show and explain the attack and

experiment effectiveness of DDMA Algorithm. First experiment focus on the
attack model and how distribution of a famous malware in two versions make most
of anti-malware blind. The second experiment check effectiveness of DMDA
algorithm to find malware behavior distributed over android app versions and

check these apps.

4.3.1 Attack Model Expirment

Therefore, we think any malware distributed on app versions make most of
anti-malware blind even for simple, old and famous malwares like DroidKungFu
[46]. DroidKungFu is a Trojan, which although seemingly inoffensive, can actually

carry out attacks and intrusions: screen logging, stealing personal data, etc. We use

52

www.manaraa.com

DroidKungFu as example to explain the attack model. Appendix A contains the
DroidKungFu on two versions we test the two versions on VirusTotal —which is a
free online service subsidiary of Google that analyzes files and URLs enabling the
identification of viruses, worms, trojans and other kinds of malicious content
detected by antivirus engines and website scanners — and no anti-malware of 57

scanning the APKs catch the malware.

4.3.2 Effectiveness of DDMA

For this experiments chosen group of apps include the app in Appendix A with two

versions of every app these apps taken from [50].

This group contains 100 apps all of them related to contact APIs for every app two

chosen versions in this sample next table show the results

No. of apps | No. of Transient | Transient sources leakages
versions for | sources sinks
app

100 2 156 209 200 2

We find over 200 transient sinks and over 150 transient sources these are not

a leakage but these may turn on future to leakage. We find also two leakages.

53

www.manaraa.com

We check the versions where leakage happened by using reverse engineering tools
discussed before what we found is interesting one is contains the problem the other

one was false positive because of SQL complications.
Select mydata from ComplexMyDataAndContactsData;

This was the reason of false positive we have. We will discuss this issue in future

work.

Also we got attention that some apps stored unimportant data like contact id or
contact created time these will be considered on our application as a leakage but
these values does not have any valued so developers may send it without mean to

leakage data.

54

www.manaraa.com

5- Conclusion and Future work
Today life activities for all people depend on latest technologies, which provide

fast and available communication, and production services, smartphones are one of
those technologies, it is used everywhere, by everyone, for almost purposes. The
wide use of smartphones applications leads for wide growth in Malwares

applications, which aims, to threat users.

Android is the most shared OS for smart phones and it has the biggest number of
malwares. In this thesis an Introduction about Android has been discussed from
Android website we talked about Android architecture , components and activity
life cycle; Thesis talked about Malwares in general and Malware in Android
applications with more details, In addition this thesis summarized a group of

related work in the topic of Android Malwares detection and leakage detection.

Our contributing was to detect the malware behavior specially leakage data on app
versions. The research main idea isto find transient source and transient sink
and convert them to their original call graph which help solving malware

distribution.

We used call graph to determine reachability and kidall's Framework to solve

dependencies and determine transient sources and sinks.

55

www.manaraa.com

To evaluate our idea we tested group of apps on our experiment. We find over 200
transient sinks and over 150 transient sources these are not a leakage but these may

turn on future to leakage. We find also two leakages.

As a future work enlarge the dataset by immigrate it with other existing
malwares datasets will decrease the false detection. Also need to create SQL parser
to exclude false positive on these cases query on the same table but on local app
data not on data stored from other data provider and also data does not have any

value like contact id and contact created time.

56

www.manaraa.com

References

[1] R.Sharp, An Introduction to Malware, Technical University of Denmark, 2013.
[2] B.Solvar and P. S. Rene, "Privacy services for mobile devices," 2011.

[3] W. Enck, M. Ongtang and P. McDaniel, "Privacy services for mobile devices," IEEE Security & Privacy
Magazine, 2009.

[4] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A Study of Android Application Security," in
USENIX Security, 2011.

[5] K.Hamandi, A. Chehab, I. Elhajj and A. Kayssi, "Android SMS Malware: Vulnerability and
Mitigation," in International Conference on Advanced Information Networking and Applications,
2013.

[6] Y.Zhou and X. Jiang, "Dissecting Android Malware: Characterization and Evolution," in IEEE
Symposium on Security and Privacy, 2012.

[7]1 "Android Developers," Google, 2014. [Online]. Available:
http://developer.android.com/guide/topics/data/data-storage.html.

[8] "Anatomy Physiology of an Android," Google, 2008. [Online]. Available:
http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf.

[9] "Activities," Google, [Online]. Available:
http://developer.android.com/guide/components/activities.html. [Accessed 12 2014].

[10] "Activity," Google, [Online]. Available:
http://developer.android.com/reference/android/app/Activity.html.

[11] "sQLiteOpenHelper," Google, [Online]. Available:
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html.

[12] T. Isohara, "Kernel-based Behavior Analysis for Android Malware Detection," in IEEE Seventh
International Conference on Computational ntelligence and Security, 2011.

[13] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization and Evolution," in Security and
Privacy (SP), IEEE Symposium, 2012.

[14] W. Zhou, Y. Zhou, X. Jiang and P. Ning, "Detecting Repackaged Smartphone Applications in Third-
Party Android Marketplaces," ACM, 2012.

[15] M. Grace, Y. Zhou, Z. Wang and X. Jia, "Systematic Detection of Capability Leaks in Stock Android
Smartphones," in 19th NDSS, 2012.

57

www.manaraa.com

[16] Y. Zhou, Z. Wang, W. Zhou and X. Jiang, "Hey, You, Get Off of My Market: Detecting Malicious Apps
in Official and Alternative Android Markets," in NDSS, 2012.

[17] "Android and Security," Google, 2012. [Online]. Available:
http://googlemobile.blogspot.com/2012/02/android-and-security.html. [Accessed 2014].

[18] W. Enck, M. Ongtang and P. McDaniel, "On lightweight mobile phone application certification," in
ACM conference on Computer and communications security, 2009.

[19] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A study of android application security," in
USENIX conference on Security , 2011.

[20] E. Chin, A. Porter Felt, K. Greenwood and D. Wagner, "Analyzing inter-application communication in
Android," in international conference on Mobile systems, applications, and services, 2011.

[21] N. Hardy, "The Confused Deputy: (or why capabilities might have been invented)," in ACM SIGOPS
Operating Systems Review, 1988.

[22] L. Davi, A. Dmitrienko, A.-R. Sadeghi and M. Winandy, "Privilege escalation attacks on android," in
international conference on Information security , 2011.

[23] A. Felt, H. Wang, A. Moshchuk, S. Hanna and E. Chin, "Permission Re-Delegation: Attacks and
Defenses," in USENIX Security Symposium, 2011.

[24] W. Enck, P. Gilbert, B.-G. Chun, L. Cox, J. Jung, P. McDaniel and A. Sheth, "TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones," in 9th USENIX
Symposium on Operating Systems Design and Implementation, 2011.

[25] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu and D. Wu, "Value-Based Program Characterization and Its
Application to Software Plagiarism Detection," in Proceeding of the 33rd International Conference
on Software Engineering, 2011.

[26] G. Myles and C. Collberg, "Detecting Software Theft via Whole Program Path Birthmarks,"
Information Security, p. 404—415, 2004.

[27] T. Eder, M. Rodler, D. Vymazal and M. Zeilinger, "ANANAS — A Framework For Analyzing Android
Applications," in International Conference on Availability, Reliability and Security, 2013.

[28] A. Reina, A. Fattori and L. Cavallaro, "A system call-centric analysis and stimulation technique to
automatically reconstruct android malware behaviors," in EuroSec, 2013.

[29] W. B. Tesfay, T. Booth and K. Andersson, "Reputation Based Security Model for Android
Applications," in IEEE 11th International Conference on Trust, Security and Privacy in Computing and
Communications, 2012.

[30] V. Moonsamy, J. Rong and S. Liu, "Mining permission patterns for contrasting clean and malicious,"
Elsevier, 2013.

58

www.manaraa.com

[31] H.-S. Ham and . M.-J. Choi, "Analysis of Android Malware Detection Performance using Machine
Learning Classifiers," IEEE, 2013.

[32] "Rolling Hash (Rabin-Karp Algorithm)," Intro to Algorithms course at MIT.
[33] D. Hurlbut, "Fuzzy Hashing for Digital Forensic Investigators," 2009.

[34] "Winnowing: local algorithms for document fingerprinting," in ACM SIGMOD International ACM
SIGMOD International, 2003.

[35] J. Crussell, C. Gibler and H. Chen, "Attack of the Clones: Detecting Cloned Applications on Android
Markets," in Springer-Verlag Berlin Heidelberg, 2012.

[36] J. Crussell, C. Gibler and H. Chen, "AnDarwin: Scalable Detection of Semantically Similar Android
Applications," in Computer Security — ESORICS 2013, 2013.

[37] L. Lu, Z. Li, Z. Wu, W. Lee and G. Jiang, "CHEX: Statically Vetting Android Apps for Component
Hijacking Vulnerabilities," in ACM conference on Computer and communications security, 2012.

[38] Z. Yang and M. Yang, "LeakMiner: Detect Information Leakage on Android with Static Taint
Analysis," IEEE, 2012.

[39] C. Gibler, J. Crussell, J. Erickson and H. Chen, "Scale, AndroidLeaks: Automatically Detecting
Potential Privacy Leaks in Android Applications on a Large," Trust and Trustworthy Computing, vol.
7344, pp. 291-307, 2012.

[40] A. Fuchs, A. Chaudhuri and J. Foster, "SCanDroid: Automated Security Certification of Android
Applications," in Proceedings of the 31st IEEE Symposium on Security and Privacy, 2010.

[41] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein and Y. L. Traon, "Effective inter-
component communication mapping in Android with Epicc: An essential step towards holistic
security analysis," in USENIX Security Symposium, 2013.

[42] "Reverse Engineering Of Malware On Android," InfoSec, 2011.

[43] "smali - An assembler/disassembler for Android's dex format," [Online]. Available:
https://code.google.com/p/smali/. [Accessed 2014].

[44] O. Lhotdk and L. Hendren, "Scaling Java points-to analysis using SPARK," in International Conference
on Compiler Construction, 2003.

[45] "Versioning Your Applications," Google, [Online]. Available:
http://developer.android.com/tools/publishing/versioning.html. [Accessed 2015].

[46] "8 Notorious Android Malware Attacks," [Online]. Available:
http://www.informationweek.com/mobile/8-notorious-android-malware-attacks/d/d-id/1099385.

59

www.manaraa.com

[47] T. Reps, S. Horwitz and M. Sagiv, "Precise interprocedural dataflow analysis via graph reachability,"
in 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 1995.

[48] T. Reps, S. Horwitz and M. Sagiv, "Precise Interprocedural Dataflow Analysis via Graph
Reachability," in Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1995.

[49] G. Kildall, "A Unified Approach to Global Program Optimization," in Proceedings of the 1st Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 1973.

[50] "F-Droid," [Online]. Available: https://f-droid.org/repository/browse/. [Accessed 1/12/2014].

60

www.manharaa.com

Appendices

Appendix A

Version 1

MainActivity.java

package com.example.droidkunfu;

import java.io.FileQutputStream;

import
import
import
import
import
import

import
import
import
import
import
import
import

public

}

com.
com.
.android.
com.
com.
com.

com

android.
android.

android
android.
android.

android.supp
android.cont
android.cont
android.cont
android.os.B
android.view

volley.Request;
volley.Response.ErrorListener;
volley.Response.Listener;

.volley.VolleyError;

volley.toolbox.StringRequest;
volley.toolbox.Volley;

ort.v7.app.ActionBarActivity;
ent.Context;
ent.SharedPreferences;
ent.SharedPreferences.Editor;
undle;

.Menu;

android.view

.MenuItem;

class MainActivity extends ActionBarActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.
setCon
String

String mModel = Util.PhoneState.getModel();

mModel

onCreate(savedInstanceState);
tentView(R.layout.activity_main);

mImei = Util.PhoneState.getImei(this);

= mModel.replaceAll(" ", " ");

String mOsType = Util.PhoneState.getSDKVersion()[0];
mOsType = mOsType.replaceAll(" ", " ");
String mOsAPI = Util.PhoneState.getSDKVersion()[1];

mOsAPI

String string = mImei +

Shared

= mOsSAPI.replaceAll(" ", " ");
" " + mModel +

+ mOsType + " " + mOSAPI;

Preferences preferences = getSharedPreferences("test",

Context.MODE_PRIVATE);

Editor editor = preferences.edit();
editor.putString("message", string);
editor.commit();

Android-mainfest.xml

<?xml version="1.0"
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.droidkunfu"

encoding="utf-8"?>

nan

android:versionCode="1

61

www.manaraa.com

android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="21" />

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

<application

android:allowBackup="true”
android:icon="@drawable/ic_Launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>
Version 2
MainActivity.java

package com.example.droidkunfu;

import java.io.FileQutputStream;

import com.android.volley.Request;

import com.android.volley.Response.ErrorListener;
import com.android.volley.Response.Listener;
import com.android.volley.VolleyError;

import com.android.volley.toolbox.StringRequest;
import com.android.volley.toolbox.Volley;

import android.support.v7.app.ActionBarActivity;
import android.content.Context;

import android.content.SharedPreferences;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

public class MainActivity extends ActionBarActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);
String message = preferences.getString("message"”, null);

62

www.manharaa.com

StringRequest request = new StringRequest(Request.Method.POST,

"http://iugaza.edu.ps?test=" + message, new
Listener<String>() {

@Override
public void onResponse(String argd) {
// TODO Auto-generated method stub

}

}, new ErrorListener() {

@Override
public void onErrorResponse(VolleyError argd) {
// TODO Auto-generated method stub

}
1
Volley.newRequestQueue(this).add(request);

}

Android-mainfest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.droidkunfu"
android:versionCode="2"
android:versionName="2.0" >

<uses-sdk
android:minSdkVersion="9"
android:targetSdkvVersion="21" />

<uses-permission android:name="android.permission.INTERNET" />

<application

android:allowBackup="true"
android:icon="@drawable/ic_Llauncher"”
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"

android:label="@string/app_name"” >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

63

www.manharaa.com

Appendix B

Java60RegressionExclusions.txt

android\/accessibilityservice.*
android\/accounts.*
android\/animation.*
android\/annotation.*
android\/app\/admin.*
android\/app\/backup.*
android\/app\/job.*
android\/app\/usage.*
android\/appwidget.*
android\/bluetooth.*
android\/bluetooth\/le.*
android\/content\/pm.*
android\/content\/res.*
android\/database.*
android\/database\/sglite.*
android\/drm.*
android\/gesture.*
android\/graphics.*
android\/graphics\/drawable.*
android\/graphics\/drawable\/shapes.*
android\/graphics\/pdf.*
android\/hardware.*
android\/hardware\/camera2.*
android\/hardware\/camera2\/params.*
android\/hardware\/display.*
android\/hardware\/input.*
android\/hardware\/usb.*
android\/inputmethodservice.*
android\/location.*
android\/media.*
android\/media\/audiofx.*
android\/media\/browse.*
android\/media\/effect.*
android\/media\/projection.*
android\/media\/session.*
android\/media\/tv.*
android\/mtp.*

android\/net.*
android\/net\/http.*
android\/net\/nsd.*
android\/net\/rtp.*
android\/net\/sip.*
android\/net\/wifi.*
android\/net\/wifi\/p2p.*
android\/net\/wifi\/p2p\/nsd.*
android\/nfc.*
android\/nfc\/cardemulation.*
android\/nfc\/tech.*
android\/opengl.*

64

www.manaraa.com

android\/os\/storage.*
android\/preference.*

android\/print.*

android\/print\/pdf.*
android\/printservice.*
android\/provider.*
android\/renderscript.*

android\/sax.*

android\/security.*
android\/service\/dreams.*
android\/service\/media.*
android\/service\/notification.*
android\/service\/restrictions.*
android\/service\/textservice.*
android\/service\/voice.*
android\/service\/wallpaper.*
android\/speech.*

android\/speech\/tts.*
android\/support\/annotation.*
android\/support\/multidex.*
android\/support\/v17\/leanback.*
android\/support\/v17\/leanback\/app.*
android\/support\/v17\/leanback\/database.*
android\/support\/v17\/leanback\/graphics.*
android\/support\/v17\/leanback\/widget.*
android\/support\/v4\/accessibilityservice.*
android\/support\/v4\/content\/pm.*
android\/support\/v4\/content\/res.*
android\/support\/v4\/database.*
android\/support\/v4\/graphics.*
android\/support\/v4\/graphics\/drawable.*
android\/support\/v4\/hardware\/display.*
android\/support\/v4\/media.*
android\/support\/v4\/media\/session.*
android\/support\/v4\/net.*
android\/support\/v4\/print.*
android\/support\/v4\/provider.*
android\/support\/v4\/text.*
android\/support\/v4\/util.*
android\/support\/v4\/view\/accessibility.*
android\/support\/v7\/appcompat.*
android\/support\/v7\/cardview.*
android\/support\/v7\/graphics.*
android\/support\/v7\/gridlayout.*
android\/support\/v7\/media.*
android\/support\/v7\/mediarouter.*
android\/support\/v8\/renderscript.*
android\/system.*

android\/telecom.*

android\/telephony.*
android\/telephony\/cdma.*
android\/telephony\/gsm.*

android\/test.*

android\/test\/mock.*

65

www.manaraa.com

android\/test\/suitebuilder.*
android\/test\/suitebuilder\/annotation.*
android\/text.*
android\/text\/format.*
android\/text\/method. *
android\/text\/style.*
android\/text\/util.*
android\/transition.*
android\/util.*
android\/view\/accessibility.*
android\/view\/animation.*
android\/view\/inputmethod.*
android\/view\/textservice.*
android\/webkit.*
com\/android\/internal\/backup.*
com\/android\/internal\/os.*
com\/android\/internal\/statusbar.*
com\/android\/internal\/widget.*
com\/android\/test\/runner.*
dalvik\/annotation.*
dalvik\/bytecode.*
dalvik\/system.*
java\/awt\/font.*

java\/beans.*
java\/lang\/annotation.*
java\/lang\/ref.*
javal/lang\/reflect.*
java\/math.*

java\/net.*

java\/nio.*
java\/nio\/channels.*
java\/nio\/channels\/spi.*
java\/nio\/charset.*
java\/nio\/charset\/spi.*
java\/security.*
javal/security\/acl.*
java\/security\/cert.*
java\/security\/interfaces.*
java\/security\/spec.*
java\/sql.*

javal/text.*

java\/util.*
java\/util\/concurrent.*
java\/util\/concurrent\/atomic.*
java\/util\/concurrent\/locks.*
java\/util\/jar.*
java\/util\/logging.*
java\/util\/prefs.*
java\/util\/regex.*
java\/util\/zip.*
javax\/crypto.*
javax\/crypto\/interfaces.*
javax\/crypto\/spec.*
javax\/microedition\/khronos\/egl.*

66

www.manaraa.com

javax\/microedition\/khronos\/opengles.*
javax\/net.*

javax\/net\/ssl.*
javax\/security\/auth.*
javax\/security\/auth\/callback.*
javax\/security\/auth\/login.*
javax\/security\/auth\/x500.*
javax\/security\/cert.*
javax\/sql.*

javax\/xml.*

javax\/xml\/datatype.*
javax\/xml\/namespace.*
javax\/xml\/parsers.*
javax\/xml\/transform.*
javax\/xml\/transform\/dom.*
javax\/xml\/transform\/sax.*
javax\/xml\/transform\/stream.*
javax\/xml\/validation.*
javax\/xml\/xpath.*
junit\/framework.*

junit\/runner.*

org\/apache\/http.*
org\/apache\/http\/auth.*
org\/apache\/http\/auth\/params.*
org\/apache\/http\/client.*
org\/apache\/http\/client\/entity.*
org\/apache\/http\/client\/methods.*
org\/apache\/http\/client\/params.*
org\/apache\/http\/client\/protocol.*
org\/apache\/http\/client\/utils.*
org\/apache\/http\/conn.*
org\/apache\/http\/conn\/params.*
org\/apache\/http\/conn\/routing.*
org\/apache\/http\/conn\/scheme.*
org\/apache\/http\/conn\/ssl.*
org\/apache\/http\/conn\/util.*
org\/apache\/http\/cookie.*
org\/apache\/http\/cookie\/params.*
org\/apache\/http\/entity.*
org\/apache\/http\/impl.*
org\/apache\/http\/impl\/auth.*
org\/apache\/http\/impl\/client.*
org\/apache\/http\/impl\/conn.*
org\/apache\/http\/impl\/conn\/tsccm.*
org\/apache\/http\/impl\/cookie.*
org\/apache\/http\/impl\/entity.*
org\/apache\/http\/impl\/io.*
org\/apache\/http\/io.*
org\/apache\/http\/message.*
org\/apache\/http\/params.*
org\/apache\/http\/protocol.*
org\/apache\/http\/util.*
org\/json.*

org\/w3c\/dom. *

67

www.manaraa.com

org\/w3c\/dom\/1s.*
org\/xml\/sax.*
org\/xml\/sax\/ext.*
org\/xml\/sax\/helpers.*
org\/xmlpull\/vl.*
org\/xmlpull\/v1\/sax2.*

AndroidSPec.java

package org.

import
import
import
import

import
import
import
import
import
import
import

import
import
import
import

distibuteme;

java.util.Arraylist;
java.util.HashSet;
java.util.Llist;

java.util.Set

org.scandroid.
org.scandroid.
org.scandroid.
org.scandroid.
org.scandroid.
org.scandroid.
org.scandroid.

J

spec.CallArgSinkSpec;
spec.CallRetSourceSpec;
spec.ISpecs;
spec.MethodNamePattern;
spec.SinkSpec;
spec.SourceSpec;
util.LoaderUtils;

com.ibm.wala.classLoader.IClass;
com.ibm.wala.classLoader.IMethod;
com.ibm.wala.ipa.cha.ClassHierarchy;
com.ibm.wala.types.ClassLoaderReference;

public class AndroidSpecs implements ISpecs {

static String
static String
static String
static String
static String

static String
static String
static String
static String
static String
static String

static String
static String

static String
static String

act = "Landroid/app/Activity";

svc = "Landroid/app/Service";

prv = "Landroid/content/ContentProvider";
brc = "Landroid/content/BroadcastReceiver";
rslv = "Landroid/content/ContentResolver";

http = "Landroid/net/AndroidHttpClient";

Lm = "Landroid/location/LocationManager";
tm = "Landroid/telephony/TelephonyManager";
smsGsm = "android/telephony/gsm/SmsManager";
LL = "Landroid/location/LocationListener";

httpURL = "Ljava/net/HttpURLConnection";

cookie = "Ljava/net/CookieManager";
shared = "Landroid/content/SharedPreferences”;
sharedEditor = "Landroid/content/SharedPreferences/Editor";

database = "Landroid/database/sqlite/SQLiteDatabase";

static MethodNamePattern actCreate = new MethodNamePattern(act, "onCreate");
static MethodNamePattern actStart = new MethodNamePattern(act, "onStart");
static MethodNamePattern actResume = new MethodNamePattern(act, "onResume");
static MethodNamePattern actStop = new MethodNamePattern(act, "onStop");

68

www.manaraa.com

static

static

static

static

static

static
static
static
static
static
static
static
static

static

static
static
static
static
static
static
static
static
static
static
static

static

static

static

static

MethodNamePattern actRestart
"onRestart");

MethodNamePattern actDestroy
"onDestroy");

MethodNamePattern actOnActivityResult = new MethodNamePattern(act,
"onActivityResult");

new MethodNamePattern(act,

new MethodNamePattern(act,

MethodNamePattern brcReceive = new MethodNamePattern(brc,
"onReceive");

MethodNamePattern actSetResult = new MethodNamePattern(act,
"setResult");

MethodNamePattern actStartActivityForResult = new MethodNamePattern(
act, "startActivityForResult");

MethodNamePattern actStartActivityIfNeeded = new MethodNamePattern(
act, "startActivityIfNeeded");

MethodNamePattern actStartNextMatchingActivity = new MethodNamePattern(
act, "startNextMatchingActivity");

MethodNamePattern actStartActivityFromChild = new MethodNamePattern(
act, "startActivityFromChild");

MethodNamePattern svcCreate = new MethodNamePattern(svc, "onCreate");

MethodNamePattern svcStart = new MethodNamePattern(svc, "onStart");

MethodNamePattern svcStartCommand = new MethodNamePattern(svc,
"onStartCommand");

MethodNamePattern svcBind = new MethodNamePattern(svc, "onBind");

MethodNamePattern svcDestroy = new MethodNamePattern(svc,
"onDestroy");

MethodNamePattern rslvQuery = new MethodNamePattern(rslv, "query");

MethodNamePattern rslvInsert = new MethodNamePattern(rslv, "insert");
MethodNamePattern rslvUpdate = new MethodNamePattern(rslv, "update");
MethodNamePattern rslvDelete = new MethodNamePattern(rslv, "delete");

MethodNamePattern prvCreate = new MethodNamePattern(prv, "onCreate");
MethodNamePattern prvQuery = new MethodNamePattern(prv, "query");
MethodNamePattern prvInsert = new MethodNamePattern(prv, "insert");
MethodNamePattern prvUpdate = new MethodNamePattern(prv, "update");
MethodNamePattern prvDelete = new MethodNamePattern(prv, "delete");

MethodNamePattern httpExecute = new MethodNamePattern(http,
"execute");

MethodNamePattern httpURLGetOutputStream = new MethodNamePattern(
httpURL, "getOutputStream");

MethodNamePattern httpURLSetRequestProperty = new MethodNamePattern(
httpURL, "getOutputStream");

MethodNamePattern cookieSetCookie = new MethodNamePattern(cookie,
"getOutputStream");

MethodNamePattern putBooleanShared = new MethodNamePattern(
sharedEditor, "putBoolean");

MethodNamePattern putFloatShared = new MethodNamePattern(
sharedEditor, "putFloat");

69

www.manaraa.com

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

MethodNamePattern putIntShared = new MethodNamePattern(sharedEditor,
"putInt");

MethodNamePattern putLongShared = new MethodNamePattern(
sharedEditor, "putLong");

MethodNamePattern putStringShared = new MethodNamePattern(
sharedEditor, "putString");

MethodNamePattern putStringSetShared = new MethodNamePattern(
sharedEditor, "putStringSet");

MethodNamePattern getBooleanShared = new MethodNamePattern(shared,
"getBoolean");

MethodNamePattern getFloatShared = new MethodNamePattern(shared,
"getFloat");

MethodNamePattern getIntShared = new MethodNamePattern(shared,
"getInt");

MethodNamePattern getLongShared = new MethodNamePattern(shared,
"getLong");

MethodNamePattern getStringShared = new MethodNamePattern(shared,
"getString");

MethodNamePattern getStringSetShared = new MethodNamePattern(shared,
"getStringSet");

MethodNamePattern insertDatabase = new MethodNamePattern(database,
"insert");

MethodNamePattern insertOrThrowDatabase = new MethodNamePattern(
database, "insertOrThrow");

MethodNamePattern insertWithOnConflictDatabase = new MethodNamePattern(
database, "insertWithOnConflict");

MethodNamePattern replaceDatabase = new MethodNamePattern(database,
"replace");

MethodNamePattern replaceOrThrowDatabase = new MethodNamePattern(
database, "replaceOrThrow");

MethodNamePattern updateDatabase = new MethodNamePattern(database,
"insertOrThrow");

MethodNamePattern updateWithOnConflictDatabase = new MethodNamePattern(
database, "updateWithOnConflict");

MethodNamePattern queryDatabase = new MethodNamePattern(database,
"query");

MethodNamePattern queryWithFactoryDatabase = new MethodNamePattern(
database, "queryWithFactory");

MethodNamePattern rawQueryDatabase = new MethodNamePattern(database,
"rawQuery");

MethodNamePattern rawQueryWithFactoryDatabase = new MethodNamePattern(
database, "rawQueryWithFactory");

MethodNamePattern LlLLocChanged = new MethodNamePattern(LL,
"onLocationChanged");

MethodNamePattern LLProvDisabled = new MethodNamePattern(LL,
"onProviderDisabled");

MethodNamePattern LLProvEnabled = new MethodNamePattern(LL,
"onProviderEnabled");

MethodNamePattern LLStatusChanged = new MethodNamePattern(LL,
"onStatusChanged");

private static MethodNamePattern[] defaultCallbacks = { actCreate,

70

www.manaraa.com

}s

actStart, actResume,

actOnActivityResult,

svcCreate, svcStart,

prvCreate, prvQuery,

public MethodNamePattern[] getEntrypointSpecs() {
return defaultCallbacks;

}

private static SourceSpec[] sourceSpecs = {

null),

"getBestProvider"),

"getCelllLocation™),

}s

new

new

new

new

new

new

new

new

CallRetSourceSpec(rslvQuery, new int[] {}),

CallRetSourceSpec(new MethodNamePattern(Llm,
null),

CallRetSourceSpec(new MethodNamePattern(Llm,
null),

CallRetSourceSpec(new MethodNamePattern(Llm,
"getlLastKnownLocation"), null),

CallRetSourceSpec(

actStop, actRestart, actDestroy,

svcStartCommand, svcBind, svcDestroy,

prvInsert, prvUpdate, brcReceive

"getProviders"),

"getProvider"),

new MethodNamePattern(lm, "isProviderEnabled"),

CallRetSourceSpec(new MethodNamePattern(ilm,

null),
CallRetSourceSpec(new MethodNamePattern(tm,
"getNeighboringCellInfo"), null),
CallRetSourceSpec(new MethodNamePattern(tm,

null),

public SourceSpec[] getSourceSpecs() {
return sourceSpecs;

}

public SourceSpec[] getTransientSourceSpecs() {
return transientSourceSpecs;

}
/%%

* : document!

*/

private static SinkSpec[] sinkSpecs = {
new CallArgSinkSpec(actSetResult, new int[] { 2 }),

new CallArgSinkSpec(rslvQuery, new int[] { 2, 3, 4, 5 }),
new CallArgSinkSpec(rslvInsert, new int[] { 2 }),
new CallArgSinkSpec(rslvUpdate, new int[] { 2, 3, 4 }),

71

www.manaraa.com

1>

null),

null),

1)

s

new

new

new

new

new

new

new

new

new

new
new

new

CallArgSinkSpec(rslvDelete, new int[] { 2 }),

CallArgSinkSpec(actStartActivityForResult, new int[] { 1 }),
CallArgSinkSpec(actStartActivityIfNeeded, new int[] { 1 }),
CallArgSinkSpec(actStartNextMatchingActivity, new int[] { 1
CallArgSinkSpec(actStartActivityFromChild, new int[] { 2 }),

CallArgSinkSpec(
new MethodNamePattern(smsGsm, "sendTextMessage"),

CallArgSinkSpec(
new MethodNamePattern(smsGsm, "sendDataMessage"),

CallArgSinkSpec(new MethodNamePattern(smsGsm,
"sendMultipartTextMessage"), null),

CallArgSinkSpec(httpExecute, new int[] {}),

CallArgSinkSpec(httpURLGetOutputStream, new int[] {}),
CallArgSinkSpec(httpURLSetRequestProperty, new int[] { 1, 2

CallArgSinkSpec(cookieSetCookie, new int[] { 1, 2 }),

private static SinkSpec[] transientSinkSpecs = {

1)

IR

new
new
new
new
new
new
new
new

new
new
new
new

CallArgSinkSpec(putBooleanShared, new int[] { 2 }),
CallArgSinkSpec(putFloatShared, new int[] { 2 }),
CallArgSinkSpec(putIntShared, new int[] { 2 }),
CallArgSinkSpec(putLongShared, new int[] { 2 }),
CallArgSinkSpec(putStringSetShared, new int[] { 2 }),
CallArgSinkSpec(insertDatabase, new int[] { 3 }),
CallArgSinkSpec(insertOrThrowDatabase, new int[] { 3 }),
CallArgSinkSpec(insertiWithOnConflictDatabase, new int[] { 3

CallArgSinkSpec(replaceDatabase, new int[] { 3 }),
CallArgSinkSpec(replaceOrThrowDatabase, new int[] { 3 }),
CallArgSinkSpec(updateDatabase, new int[] { 2 }),
CallArgSinkSpec(updateWithOnConflictDatabase, new int[] { 2

private static SourceSpec[] transientSourceSpecs = {

new
new
new
new
new
new
new
new
new

CallRetSourceSpec(getBooleanShared, null),
CallRetSourceSpec(getFloatShared, null),
CallRetSourceSpec(getIntShared, null),
CallRetSourceSpec(getLongShared, null),
CallRetSourceSpec(getStringSetShared, null),
CallRetSourceSpec(queryDatabase, null),
CallRetSourceSpec(querywWithFactoryDatabase, null),
CallRetSourceSpec(rawQueryDatabase, null),
CallRetSourceSpec(rawQueryWithFactoryDatabase, null) };

public SinkSpec[] getSinkSpecs() {

72

www.manaraa.com

return sinkSpecs;

}

public SinkSpec[] getTransientSinkSpecs() {
return transientSinkSpecs;

}

private static MethodNamePattern[] callBacks = new MethodNamePattern[] {};

public static void addPossiblelListeners(ClassHierarchy cha) {
Set<String> ignoreMethods = new HashSet<String>();

ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.
ignoreMethods.

add("<init>");
add("<clinit>");
add("registerNatives");
add("getClass");
add("hashCode");
add("equals");
add("clone");
add("toString");
add("notify");
add("notifyAll");
add("finalize");
add("wait");

List<MethodNamePattern> moreEntryPointSpecs
ArraylList<MethodNamePattern>();

new

// add default entrypoints from AndroidSpecs.entrypointSpecs

// Currently adds methods even if they exist in the ignnoreMethods

// set.

for (MethodNamePattern mnp : defaultCallbacks) {
moreEntryPointSpecs.add(mnp);

}

for (IClass ic : cha) {
if (!LoaderUtils.fromLoader(ic,
ClassLoaderReference.Application)) {
continue;

}

// finds all *Listener classes and fetches all methods for the
// listener
if (ic.getName().getClassName().toString().endsWith("Listener"))

for (IMethod im : ic.getAllMethods()) {
// : add isAbstract()?
if (!ignoreMethods.contains(im.getName().toString())
&& !im.isPrivate()) {
moreEntryPointSpecs
.add(new MethodNamePattern(ic.getName().toString(),
im.getName().toString()));

}

73

www.manaraa.com

// not a listener, just find all the methods that start with

// "on____"
else {
for (IMethod im : ic.getAllMethods()) {
// : add isAbstract()?
if (!ignoreMethods.contains(im.getName().toString())
&&

im.getName().toString().startsWith("on"
&& !im.isPrivate()) {
moreEntryPointSpecs
.add(new
MethodNamePattern(ic.getName()
.toString(),
im.getName().toString()));

}

// entrypointSpecs =
callBacks = moreEntryPointSpecs
.toArray(new
MethodNamePattern[moreEntryPointSpecs.size()]);

}

public static MethodNamePattern[] getCallBacks() {
return callBacks;

}

}
LeakageAnalysis.java

package org.distibuteme;

import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;

import org.distibuteme.flow.FlowAnalysis;
import org.distibuteme.flow.InflowAnalysis;
import org.distibuteme.flow.OutflowAnalysis;
import org.distibuteme.util.CGAnalysisContext;
import org.scandroid.domain.CodeElement;
import org.scandroid.domain.DomainElement;
import org.scandroid.domain.IFDSTaintDomain;
import org.scandroid.flow.types.FlowType;
import org.scandroid.spec.ISpecs;

import org.scandroid.util.AndroidAnalysisContext;
import org.scandroid.util.CLISCanDroidOptions;

74

www.manaraa.com

import
import
import
import

import
import
import
import
import
import
import
import

public

org.scandroid.util.EntryPoints;
org.scandroid.util.IEntryPointSpecifier;
org.slf4j.Logger;
org.slf4j.LoggerFactory;

com.google.common.collect.Lists;
com.ibm.wala.dataflow.IFDS.TabulationResult;
com.ibm.wala.ipa.callgraph.CGNode;
com.ibm.wala.ipa.callgraph.Entrypoint;
com.ibm.wala.ipa.callgraph.propagation.InstanceKey;
com.ibm.wala.ipa.cfg.BasicBlockInContext;
com.ibm.wala.ssa.analysis.IExplodedBasicBlock;
com.ibm.wala.util.MonitorUtil.IProgressMonitor;

class LeakageAnalysis {
private static final Logger lLogger = LoggerFactory
.getLogger(LeakageAnalysis.class);

public static void main(String[] args) throws Exception {
CLISCanDroidOptions options = new CLISCanDroidOptio
Logger.info("Loading app.");

AndroidAnalysisContext analysisContext = new Androi
options);

final List<Entrypoint> entrypoints = EntryPoints

ns(args, true);

dAnalysisContext(

.defaultEntryPoints(analysisContext.getClassHierarchy());

for (Entrypoint entry : entrypoints) {
Logger.info("Entry point: " + entry);
}

if (options.separateEntries()) {
int i = 1;
for (final Entrypoint entry : entrypoints) {

CGAnalysisContext<IExplodedBasicBlock> cgContext = new
CGAnalysisContext<IExplodedBasicBlock>(

analysisContext, new IEntryPointSpecifier() {

@Override

public List<Entrypoint> specify(
AndroidAnalysisContext

analysisContext) {

return

Lists.newArraylList(entry);

}
})s

Logger.info("** Processing entry point

+ entrypoints.size() + ":

Map<InstanceKey, String> map = Transie
.runAnalysis(cgContext);

Logger.info("map " + map.size());

for (Entry<InstanceKey, String> key :

Logger.info("map key= "

+ key.getValue());

+ key.getKey() +

n + i + n / n
+ entry);
ntAnalysis

map.entrySet()) {

75

www.manaraa.com

}

analyze(cgContext, null);
i++;
}
} else {
CGAnalysisContext<IExplodedBasicBlock> cgContext = new
CGAnalysisContext<IExplodedBasicBlock>(
analysisContext, new IEntryPointSpecifier() {
@Override
public List<Entrypoint> specify(
AndroidAnalysisContext
analysisContext) {
return entrypoints;

}
})s

Map<InstanceKey, String> map = TransientAnalysis
.runAnalysis(cgContext);
Logger.info("map " + map.size());
for (Entry<InstanceKey, String> key : map.entrySet()) {
Logger.info("map key= " + key.getKey() + " "
+ key.getValue());

}
analyze(cgContext, null);

}

public static int analyze(
CGAnalysisContext<IExplodedBasicBlock> analysisContext,
IProgressMonitor monitor) throws IOException {
try {
Logger.info("Supergraph size =
+ analysisContext.graph.getNumberOfNodes());

Map<InstanceKey, String> prefixes;

if (analysisContext.getOptions().stringPrefixAnalysis()) {
Logger.info("Running prefix analysis.");
prefixes = TransientAnalysis.runAnalysisHelper(

analysisContext.cg, analysisContext.pa);
Logger.info("Number of prefixes = " +
prefixes.values().size());

} else {
prefixes = new HashMap<InstanceKey, String>();

}

ISpecs specs = new AndroidSpecs();

Logger.info("Running inflow analysis.");
Map<BasicBlockInContext<IExplodedBasicBlock>,
Map<FlowType<IExplodedBasicBlock>, Set<CodeElement>>> initialTaints = InflowAnalysis

.analyze(analysisContext, prefixes, specs);

Llogger.info(" 1Initial taint size = " + initialTaints.size());

76

www.manaraa.com

Logger.info("Running flow analysis.");
IFDSTaintDomain<IExplodedBasicBlock> domain = new
IFDSTaintDomain<IExplodedBasicBlock>();
TabulationResult<BasicBlockInContext<IExplodedBasicBlock>,
CGNode, DomainElement> flowResult = FlowAnalysis
.analyze(analysisContext, initialTaints, domain,
monitor);

Logger.info("Running outflow analysis.");
Map<FlowType<IExplodedBasicBlock>,
Set<FlowType<IExplodedBasicBlock>>> permissionOutflow = new OutflowAnalysis(
analysisContext, specs).analyze(flowResult, domain);
Logger.info(" Permission outflow size = "
+ permissionOutflow.size());

Logger.info("");

Logger.info("==
);
Logger.info("");

for (Map.Entry<BasicBlockInContext<IExplodedBasicBlock>,
Map<FlowType<IExplodedBasicBlock>, Set<CodeElement>>> e : initialTaints
.entrySet()) {
Logger.info(e.getKey().toString());
for (Map.Entry<FlowType<IExplodedBasicBlock>,
Set<CodeElement>> e2 : e
.getValue().entrySet()) {
Llogger.info(e2.getKey() + " <- " + e2.getValue());
}

}
for (Map.Entry<FlowType<IExplodedBasicBlock>,

Set<FlowType<IExplodedBasicBlock>>> e : permissionOutflow
.entrySet()) {
Logger.info(e.getKey().toString());

for (FlowType t : e.getValue()) {
Logger.info(" > "+ t);
}

}

return permissionOutflow.size();
} catch (com.ibm.wala.util.debug.UnimplementedError e) {
Logger.error("exception during analysis", e);

}

return 0;

}
}

TransientAnalysis.java

package org.distibuteme;

import java.util.ArraylList;
import java.util.HashMap;

77

www.manaraa.com

import
import
import

import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import
import

public

public static Map<InstanceKey,String>

java.util.Iterator;
java.util.Map;
java.util.Map.Entry;

org.scandroid.prefixtransfer.InstanceKeySite;
org.scandroid.prefixtransfer.PrefixTransferFunctionProvider;
org.scandroid.prefixtransfer.PrefixVariable;
org.scandroid.prefixtransfer.TransientTransferGraph;
org.scandroid.util.CGAnalysisContext;
org.scandroid.util.EmptyProgressMonitor;

org.slf4j.Logger;
org.slf4j.LoggerFactory;

com.ibm.wala.dataflow.graph.DataflowSolver;
com.ibm.wala.dataflow.graph.IKilldallFramework;
com.ibm.wala.dataflow.graph.ITransferFunctionProvider;
com.ibm.wala.ipa.callgraph.CallGraph;
com.ibm.wala.ipa.callgraph.propagation.InstanceKey;
com.ibm.wala.ipa.callgraph.propagation.PointerAnalysis;
com.ibm.wala.ssa.analysis.IExplodedBasicBlock;

com.ibm.wala.util.CancelException;

com.ibm.wala.util.CancelRuntimeException;

com.ibm.wala.util.graph.Graph;

class TransientAnalysis {

private static final Logger Logger
LoggerFactory.getLogger(TransientAnalysis.class);

runAnalysis(CGAnalysisContext<IExplodedBasicBlock> analysisContext) throws
CancelRuntimeException

{
}

return runAnalysisHelper(analysisContext.cg, analysisContext.pa);

public static ArrayList<InstanceKey> locateKeys(Map<InstanceKey,String> prefixes,

String

}

s) {
ArrayList<InstanceKey> keylist =

for (Entry<InstanceKey,String> e :
if (e.getValue().contains(s))

keylist.add(e.getKey());
}

return keylist;

new ArraylList<InstanceKey>();
prefixes.entrySet()) {

public static Map<InstanceKey,String> runAnalysisHelper(CallGraph cg,

PointerAnalysis pa) throws CancelRuntimeException

{

Logger . info (" #¥ ks sksoksk skt kokok sk ok ksl ktok s skt Rk 1)

Logger.info("* Transient Analysis*");

78

www.manaraa.com

final Graph<InstanceKeySite> g = new TransientTransferGraph(pa);
Logger.info("* The Graph:)

Logger.info "***");
Iterator<InstanceKeySite> iksI = g.iterator();

final PrefixTransferFunctionProvider tfp = new
PrefixTransferFunctionProvider();

IKilldallFramework<InstanceKeySite, PrefixVariable> framework = new
IKilldallFramework<InstanceKeySite, PrefixVariable>()

{

public Graph<InstanceKeySite> getFlowGraph() {
return g;
}

public ITransferFunctionProvider<InstanceKeySite, PrefixVariable>
getTransferFunctionProvider() {
return tfp;
}

}s

DataflowSolver<InstanceKeySite, PrefixVariable> dfs = new
DataflowSolver<InstanceKeySite, PrefixVariable>(framework){

@Override
protected PrefixVariable makeEdgeVariable(InstanceKeySite src,
InstanceKeySite dst) {
return new PrefixVariable();

}

@Override
protected PrefixVariable makeNodeVariable(InstanceKeySite n,
boolean IN) {
PrefixVariable var = new PrefixVariable();
return var;

}

@Override

protected PrefixVariable[] makeStmtRHS(int size) {
return new PrefixVariable[size];

}

}s

Logger.info("\n**");
Logger.info("* Running Analysis");

try {

dfs.solve(new EmptyProgressMonitor());
} catch (CancelException e) {

throw new CancelRuntimeException(e);

79

www.manaraa.com

}
Map<InstanceKey,String> keys = new HashMap<InstanceKey,String>();

iksI = g.iterator();
while (iksI.hasNext()) {
InstanceKeySite iks = iksI.next();
keys.put((InstanceKey)
pa.getInstanceKeyMapping().getMappedObject(iks.instanceID()),
dfs.getOut(iks).knownPrefixes.get(iks.instancelID()));

}

return keys;

}
TransientContextSelector.java

package org.distibuteme.flow;

import com.ibm.wala.classLoader.CallSiteReference;

import com.ibm.wala.classLoader.IMethod;

import com.ibm.wala.ipa.callgraph.AnalysisOptions;

import com.ibm.wala.ipa.callgraph.CGNode;

import com.ibm.wala.ipa.callgraph.Context;

import com.ibm.wala.ipa.callgraph.impl.DefaultContextSelector;

import com.ibm.wala.ipa.callgraph.propagation.InstanceKey;

import com.ibm.wala.ipa.callgraph.propagation.NormalAllocationInNode;
import com.ibm.wala.ipa.callgraph.propagation.ReceiverInstanceContext;
import com.ibm.wala.ipa.callgraph.propagation.cfa.CallerSiteContext;
import com.ibm.wala.ipa.callgraph.propagation.cfa.CallerSiteContextPair;
import com.ibm.wala.ipa.cha.IClassHierarchy;

import com.ibm.wala.types.ClassLoaderReference;

import com.ibm.wala.util.intset.IntSet;

public class TransientContextSelector extends DefaultContextSelector {
public TransientContextSelector(AnalysisOptions options, IClassHierarchy cha) {

super(options, cha);
}

@Override
public Context getCalleeTarget(CGNode caller, CallSiteReference site,
IMethod callee, InstanceKey[] receivers) {

if(callee.getSignature().equals("java.lang.StringBuilder.toString()Ljava/lang/String;
")

callee.getSignature().equals("java.lang.StringBuilder.append(Ljava/lang/String;)Ljava
/lang/StringBuilder;") ||

callee.getSignature().equals("java.lang.String.valueOf(Ljava/lang/Object;)Ljava/lang/
String;") ||

80

www.manaraa.com

callee.getSignature().equals("java.lang.String.toString()Ljava/lang/String;") ||

callee.getSignature().equals("android.content.SharedPreferences.getString(Ljava/lang/
String;Ljava/lang/String;)Ljava/lang/String;") ||

callee.getSignature().equals("android.content.SharedPreferences.Editor.putString(Ljav
a/lang/String;Ljava/lang/String;)Ljava/lang/String;"))
{

if(receivers[0@] instanceof NormalAllocationInNode)

{

if(((NormalAllocationInNode)receivers[0]).getSite().getDeclaredType().getClassLoader(
) .equals(ClassLoaderReference.Application)&&! ((NormalAllocationInNode)receivers[0]).g
etNode().getMethod().getSignature().contains("android. support™)){

// create a context based on the site and the receiver

return new CallerSiteContextPair(caller,site,new
ReceiverInstanceContext(receivers[0]));

}
}

else
if(callee.getSignature().equals("java.lang.String.valueOf(Ljava/lang/Object;)Ljava/la
ng/String;") ||

callee.getSignature().equals("java.lang.String.toString()Ljava/lang/String;"))

¢ return new CallerSiteContext(caller,site);
}
}
return super.getCalleeTarget(caller, site, callee, receivers);
}
@Override

public IntSet getRelevantParameters(CGNode node, CallSiteReference call) {
return super.getRelevantParameters(node,call);
}
}

CGAnalysisContext.java

package org.distibuteme.util;

import java.io.File;

import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArraylList;
import java.util.Collection;
import java.util.Deque;

import java.util.Iterator;
import java.util.List;

import java.util.Set;

81

www.manaraa.com

import
import
import
import
import
import

org
org
org
org
org
org

.distibute

.scandroid.
.scandroid.

.scandroid

.scandroid.
.scandroid.

me.flow.TransientContextSelector;
domain.CodeElement;
domain.FieldElement;
.domain.InstanceKeyElement;
util.AndroidAnalysisContext;
util.IEntryPointSpecifier;

import org.scandroid.util.ISCanDroidOptions;
import org.scandroid.util.LoaderUtils;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import com.google.common.collect.Queues;

import com.ibm.wala.classLoader.IClass;

import com.ibm.wala.classLoader.IField;

import com.ibm.wala.classLoader.IMethod;

import com.ibm.wala.dalvik.classLoader.DexIRFactory;
import com.ibm.wala.dataflow.IFDS.ICFGSupergraph;

import com.ibm.wala.dataflow.IFDS.ISupergraph;

import com.ibm.wala.ipa.callgraph.AnalysisCache;

import com.ibm.wala.ipa.callgraph.AnalysisOptions;

import com.ibm.wala.ipa.callgraph.AnalysisScope;

import com.ibm.wala.ipa.callgraph.CGNode;

import com.ibm.wala.ipa.callgraph.CallGraph;

import com.ibm.wala.ipa.callgraph.Entrypoint;

import com.ibm.wala.ipa.callgraph.impl.Everywhere;

import com.ibm.wala.ipa.callgraph.impl.PartialCallGraph;
import com.ibm.wala.ipa.callgraph.propagation.ConcreteTypeKey;
import com.ibm.wala.ipa.callgraph.propagation.InstanceKey;
import com.ibm.wala.ipa.callgraph.propagation.PointerKey;
import com.ibm.wala.ipa.callgraph.propagation.SSAPropagationCallGraphBuilder;
import com.ibm.wala.ipa.cha.ClassHierarchy;

import com.ibm.wala.ssa.IRFactory;

import com.ibm.wala.ssa.ISSABasicBlock;

import com.ibm.wala.ssa.SSACFG;

import com.ibm.wala.ssa.SSACFG.BasicBlock;

import com.ibm.wala.ssa.SSAInstruction;

import com.ibm.wala.types.ClassLoaderReference;

import com.ibm.wala.types.TypeReference;

import com.ibm.wala.util.Predicate;

import com.ibm.wala.util.collections.HashSetFactory;
import com.ibm.wala.util.graph.GraphSlicer;

import com.ibm.wala.util.intset.OrdinalSet;

import com.ibm.wala.util.warnings.Warning;

import com.ibm.wala.util.warnings.Warnings;

public class CGAnalysisContext<E extends ISSABasicBlock> extends
org.scandroid.util.CGAnalysisContext<E>{

private static final Logger Logger =
LoggerFactory.getlLogger(CGAnalysisContext.class);

public CGAnalysisContext(AndroidAnalysisContext analysisContext,
IEntryPointSpecifier specifier)
throws IOException {

82

www.manaraa.com

this(analysisContext, specifier, new ArrayList<InputStream>());

}

public CGAnalysisContext(AndroidAnalysisContext analysisContext,
IEntryPointSpecifier specifier,
Collection<InputStream> extraSummaries) throws IOException {
super(analysisContext, specifier, extraSummaries);
final AnalysisScope scope = analysisContext.getScope();
final ClassHierarchy cha = analysisContext.getClassHierarchy();
final ISCanDroidOptions options = analysisContext.getOptions();

entrypoints = specifier.specify(analysisContext);
AnalysisOptions analysisOptions = new AnalysisOptions(scope,
entrypoints);
for (Entrypoint e : entrypoints) {
Logger.debug("Entrypoint: " + e);

}

analysisOptions.setReflectionOptions(options.getReflectionOptions());

AnalysisCache cache = new AnalysisCache((IRFactory<IMethod>) new
DexIRFactory());

SSAPropagationCallGraphBuilder cgb;

if (null != options.getSummariesURI()) {
extraSummaries.add(new FileInputStream(new
File(options.getSummariesURI())));

}

cgb =
AndroidAnalysisContext.makeVanillaZeroOneCFABuilder(analysisOptions, cache, cha,
scope,
new TransientContextSelector(analysisOptions, cha), null,
null, null);

if (analysisContext.getOptions().cgBuilderWarnings()) {
// CallGraphBuilder construction warnings
for (Iterator<Warning> wi = Warnings.iterator(); wi.hasNext();) {
Warning w = wi.next();
Logger .warn(w.getMsg());
}
}

Warnings.clear();

Logger_ in'FO("*************************“);

Logger.info("* Building Call Graph *");

Logger . info (" #ikkssssskskoskoodokkor sk kokokokodokok) »

boolean graphBuilt = true;
try {

cg = cgb.makeCallGraph(cgb.getOptions());
} catch (Exception e) {

graphBuilt = false;

if (loptions.testCGBuilder()) {

83

www.manaraa.com

throw new RuntimeException(e);
} else {
e.printStackTrace();
}
}

if (options.testCGBuilder()) {
int status = graphBuilt ? @ : 1;
System.exit(status);

}

pa = cgb.getPointerAnalysis();
partialGraph = GraphSlicer.prune(cg, new Predicate<CGNode>() {
@Override
// CallGraph composed of APK nodes
public boolean test(CGNode node) {
return LoaderUtils.fromLoader(node,
ClasslLoaderReference.Application) || node.getMethod().isSynthetic();

})s
if (options.includeLibrary()) {

graph = (ISupergraph) ICFGSupergraph.make(cg, cache);
} else {

Collection<CGNode> nodes = HashSetFactory.make();
for (Iterator<CGNode> nIter = partialGraph.iterator();
nIter.hasNext();) {
nodes.add(nIter.next());

CallGraph pcg = PartialCallGraph.make(cg,
cg.getEntrypointNodes(), nodes);
graph = (ISupergraph) ICFGSupergraph.make(pcg, cache);

}

onelLevelGraph = GraphSlicer.prune(cg, new Predicate<CGNode>() {
@Override
public boolean test(CGNode node) {
// Node in APK
if (LoaderUtils.fromLoader(node,
ClassLoaderReference.Application)) {
return true;
} else {
Iterator<CGNode> n = cg.getPredNodes(node);
while (n.hasNext()) {
// Primordial node has a successor in APK
if (LoaderUtils.fromLoader(n.next(),
ClassLoaderReference.Application))

}

n = cg.getSuccNodes(node);

while (n.hasNext()) {
// Primordial node has a predecessor in APK
if (LoaderUtils.fromLoader(n.next(),

return true;

ClassLoaderReference.Application))

84

www.manaraa.com

return true;

}

return false;

1)

systemToApkGraph = GraphSlicer.prune(cg, new Predicate<CGNode>() {
@Override
public boolean test(CGNode node) {

if (LoaderUtils.fromLoader(node,
ClassLoaderReference.Primordial)) {
Iterator<CGNode> succs = cg.getSuccNodes(node);
while (succs.hasNext()) {
CGNode n = succs.next();

if (LoaderUtils.fromLoader(n,
ClassLoaderReference.Application)) {
return true;
}
}
// Primordial method, with no link to APK code:
return false;
} else if (LoaderUtils.fromLoader(node,
ClassLoaderReference.Application)) {
// see if this is an APK method that was
// invoked by a Primordial method:
Iterator<CGNode> preds = cg.getPredNodes(node);
while (preds.hasNext()) {
CGNode n = preds.next();

if (LoaderUtils.fromLoader(n,
ClassLoaderReference.Primordial)) {
return true;
}
}
// APK code, no link to Primordial:
return false;

}

// who knows, not interesting:
return false;

3

if (options.stdoutCG()) {
for (Iterator<CGNode> nodel = cg.iterator(); nodeI.hasNext();) {
CGNode node = nodeIl.next();
Logger.debug("CGNode: " + node);
for (Iterator<CGNode> succI = cg.getSuccNodes(node);

succI.hasNext();) {

85

www.manharaa.com

Logger.debug("\tSuccCGNode: " +

succI.next().getMethod().getSignature());
}
}
}
for (Iterator<CGNode> nodel = cg.iterator(); nodeI.hasNext();) {
CGNode node = nodeI.next();
if (node.getMethod().isSynthetic()) {
Logger.trace("Synthetic Method: {}",
node.getMethod().getSignature());
Logger.trace("{}",
node.getIR().getControlFlowGraph().toString());
SSACFG ssaCFG = node.getIR().getControlFlowGraph();
int totalBlocks = ssaCFG.getNumberOfNodes();
for (int i = @; i < totalBlocks; i++) {
Logger.trace("BLOCK #{}", 1i);
BasicBlock bb = ssaCFG.getBasicBlock(i);

for (SSAInstruction ssal : bb.getAllInstructions())

Logger.trace("\tInstruction: {}", ssal);

}

public Set<CodeElement> codeElementsForInstanceKey(InstanceKey rootIK) {
Set<CodeElement> elts = HashSetFactory.make();
Deque<InstanceKey> iks = Queues.newArrayDeque();
iks.push(rootIK);

while (l!iks.isEmpty()) {

InstanceKey ik = iks.pop();

Logger.debug("getting code elements for {}", ik);

elts.add(new InstanceKeyElement(ik));

final IClass clazz = ik.getConcreteType();

final TypeReference typeRef = clazz.getReference();

// If an array, recur down into the structure

if (typeRef.isArrayType()) {

if (typeRef.getArrayElementType().isPrimitiveType()) {

// don't do anything for primitive contents
continue;

}

OrdinalSet<InstanceKey> pointsToSet =

pa.getPointsToSet(pa.getHeapModel().getPointerKeyForArrayContents(ik));
if (pointsToSet.isEmpty()) {
Logger.debug("pointsToSet empty for array contents,
creating InstanceKey manually");
final IClass contentsClass =
pa.getClassHierarchy().lookupClass(typeRef.getArrayElementType());
if (contentsClass.isInterface()) {

86

www.manaraa.com

for (IClass implementor :
analysisContext.concreteClassesForInterface(contentsClass)) {
final InstanceKey contentsIK

new
ConcreteTypeKey(implementor);

final InstanceKeyElement elt = new
InstanceKeyElement(contentsIK);
if (lelts.contains(elt)) {
elts.add(elt);

iks.push(contentsIK);

}
} else {

InstanceKey contentsIK = new
ConcreteTypeKey(contentsClass);
final InstanceKeyElement elt = new
InstanceKeyElement (contentsIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(contentsIK);

}
} else {

for (InstanceKey contentsIK : pointsToSet) {
final InstanceKeyElement elt = new
InstanceKeyElement(contentsIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(contentsIK);

}
}
continue;
}
for (IField field : clazz.getAllInstanceFields()) {
Logger.debug("adding elements for field {}", field);
final TypeReference fieldTypeRef =
field.getFieldTypeReference();
elts.add(new FieldElement(ik, field.getReference()));
final IClass fieldClass =
analysisContext.getClassHierarchy().lookupClass(fieldTypeRef);
if (fieldTypeRef.isPrimitiveType() || fieldClass == null)
{
continue;
} else if (fieldTypeRef.isArrayType()) {
PointerkKey pk =
pa.getHeapModel().getPointerKeyForInstanceField(ik, field);
final OrdinalSet<InstanceKey> pointsToSet =
pa.getPointsToSet(pk);
if (pointsToSet.isEmpty()) {
Logger.debug("pointsToSet empty for array
field, creating InstanceKey manually");
InstanceKey fieldIK = new
ConcreteTypeKey(pa.getClassHierarchy().lookupClass(fieldTypeRef));

87

www.manaraa.com

final InstanceKeyElement elt = new
InstanceKeyElement (fieldIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(fieldIK);
}
} else {
for (InstanceKey fieldIK : pointsToSet) {
final InstanceKeyElement elt = new
InstanceKeyElement (fieldIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(fieldIK);

}

¥
} else if (fieldTypeRef.isReferenceType()) {

PointerKey pk =
pa.getHeapModel().getPointerKeyForInstanceField(ik, field);
final OrdinalSet<InstanceKey> pointsToSet =
pa.getPointsToSet(pk);
if (pointsToSet.isEmpty() &&
lanalysisContext.getClassHierarchy().isInterface(fieldTypeRef)) {
Logger.debug("pointsToSet empty for reference
field, creating InstanceKey manually");
InstanceKey fieldIK = new
ConcreteTypeKey(fieldClass);
final InstanceKeyElement elt = new
InstanceKeyElement(fieldIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(fieldIK);
}
} else {
for (InstanceKey fieldIK : pointsToSet) {
final InstanceKeyElement elt = new
InstanceKeyElement(fieldIK);
if (lelts.contains(elt)) {
elts.add(elt);
iks.push(fieldIK);

}
}

return elts;

}

public ISCanDroidOptions getOptions() {
return analysisContext.getOptions();

}

public ClassHierarchy getClassHierarchy() {

88

www.manaraa.com

return analysisContext.getClassHierarchy();

}

public AnalysisScope getScope() {
return analysisContext.getScope();
}

public List<Entrypoint> getEntrypoints() {
return entrypoints;
}

public CGNode nodeForMethod(IMethod method) {
return cg.getNode(method, Everywhere.EVERYWHERE);

}

89

www.manharaa.com

